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Advances in blockchain technology have attracted significant attention across the world. The practical
blockchain applications emerging in various domains, ranging from finance, healthcare, and entertainment,
have quickly become attractive targets for adversaries. The novelty of the technology coupled with the high
degree of anonymity it provides made malicious activities even less visible in the blockchain environment.
This made their robust detection challenging.

This article presents EtherShield, a novel approach for identifying malicious activity on the Ethereum
blockchain. By combining temporal transaction information and contract code characteristics, EtherShield
can detect various types of threats and provide insight into the behavior of contracts. The time-interval-based
analysis used by EtherShield enables expedited detection, achieving comparable accuracy to other approaches
with significantly less data. Our validation analysis, which involved over 15,000 Ethereum accounts, demon-
strated that EtherShield can significantly expedite the detection of malicious activity while maintaining high
accuracy levels (86.52% accuracy with 1 hour of transaction history data and 91.33% accuracy with 1 year of
transaction history data).
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1 INTRODUCTION

In August 2021, the cryptocurrency platform Poly Network was hit by a major cyberattack that
resulted in $611 million worth of digital tokens being stolen, the biggest loss in crypto ecosystem
to date [1]. The attacker exploited a vulnerability in a smart contract allowing them to successfully
transfer the tokens to their own accounts. Although most of the assets were eventually returned,
the process of recovering the loss has emphasized a dire need for strong blockchain security
guarantees.
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Blockchain technology is getting increasingly popular across industries that require trans-
parency and trust. There are over 1,000 blockchain platforms available in the world today [2].
Many of them enable the creation and automated execution of smart contracts in a decentralized
way. A smart contract is a piece of self-executing computer code written in a high-level language
(e.g., Solidity). Once compiled, contract’s bytecode is hosted by a blockchain and can be triggered
by blockchain transactions to execute some built-in functionality of the contract. Once deployed
on the chain, the contracts are immutable, i.e., they cannot be modified or deleted from the chain,
which in essence provides transaction integrity verification in trust-less environment.

Ethereum [3] was the first platform to support smart contracts, with many more to follow (e.g.,
Tezos [4], EOS [5], Cardano [6], and Hyperledger Fabric [7], Lisk [8]).

The rapid adoption of cryptocurrencies quickly escalated the severity and frequency of
malicious activities on the blockchain. To address this problem, a significant amount of research
was dedicated to detection of vulnerabilities in smart contracts before their deployment on the
blockchain [9–23]. Focusing on the contract’s code, these approaches fail to detect illicit activity
on the chain after the contract deployment.

To address this issue, research studies focused on detection of either generic malicious
transactions [24–26] or known illicit activities. For example, honeypot smart contracts [27],
phishing attacks [28–32], and Ponzi scheme activities [33–37]. The overwhelming majority of
these research studies focus solely on identifying a specific type of malicious behavior, thus
limiting their applicability in real environment.

A more few solutions are capable of detecting suspicious transactions though instrumentation
of Ethereum nodes or contracts [38–41]. While these approaches are capable of detecting suspi-
cious accounts early, they require modification of an Ethereum client and tend to incur significant
resource consumption, and as a result are mostly not suitable for a large scale detection. Studies
that do not leverage instrumentation require replaying historic transactions similarly incurring a
significant cost (e.g., HORUS [42], EthScope [43]).

In spite of over a decade of research, the lack of practical tools still presents a significant hin-
drance for the early detection of malicious activities on the blockchain. In practice, platforms often
resort to manual analysis and labelling of suspicious activity.

To tackle this challenge, in this article, we introduce EtherShield, a novel time-interval-based
incremental analysis for detection of malicious activity on Ethereum blockchain. As opposed to
the existing approaches, EtherShield considers the natural evolution of the real-time Ethereum
chain’s state. As different malicious activity is manifested through different characteristics, in our
analysis, we assess accounts through transaction activity and code-based patterns. These two com-
plementary perspectives allow us to reveal hidden illicit behavior. For example, it is evident from
existing studies [28] that communication between accounts can characterize phishing attacks, yet,
an analysis of phishing contracts’ code often provides limited evidence of their maliciousness.

To allow for expedited detection of illicit behavior, EtherShield employs a time-interval-based
analysis. Unlike the existing methods that depend on complete transaction history for the analyzed
accounts, we leverage temporal transaction information to provide an immediate insight into con-
tracts’ behavior. We rely on time intervals to provide us with a historical record, allowing us to
identify malicious activity based on the amount of available information. This strategy is more
feasible for deployment in real-life scenarios, as it is often impractical to delay detection until all
transaction data becomes accessible.

EtherShield utilizes an incremental approach to address situations where the accuracy of the
detection result is insufficient for the current time frame. Time-interval-based analysis enables
EtherShield to incrementally repeat classification with larger time intervals to improve detection
accuracy or until conclusive detection results are achieved. It is important to note that this
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incremental approach does not necessitate the presence of all available data, thus enabling imme-
diate detection while progressively improving detection accuracy as more data becomes available.

We validate the utility of EtherShield on a set of 15,264 Ethereum accounts among which 5,320
are benign and 9,944 represent five different types of malicious activities. In our evaluations,
EtherShield is able to detect specific type of malicious activity with 86.52% detection accuracy
using 1-hour interval data and 91.33% accuracy with 1-year data. Compared to the existing
approaches that commonly leverage significant transaction history, EtherShield provides an
expedited detection, achieving comparable accuracy with significantly less data than what is
required by other approaches.

Our main contributions can be summarized as follows:

— We design and implement EtherShield, a new time-interval-based incremental analysis for
detection of different types of malicious activity on Ethereum blockchain.

— We evaluate the effectiveness of EtherShield and investigate the accuracy of detection over
15 time intervals.

— We compare EtherShield against state-of-the art blockchain scam detection approach.

To facilitate research in this field, we made the code and datasets used in this study publicly
available.1

The rest of this work is organized as follows: Section 2 gives an overview of the related work in
the field, Section 3 illustrates the background of Ethereum. Section 4 introduces our approach for
solving the security problem on Ethereum. Section 5 gives the details for experimental setup, and
Section 6 gives a detailed description of the our experiments for our approach. Section 7 analyzes
the experiment results, and Section 8 is the conclusion of this study.

2 RELATED WORK

Continued adoption of cryptocurrencies escalated the malicious activities on the blockchains,
attracting significant research attention. The earlier studies in the field primarily aimed at detec-
tion of vulnerabilities in smart contracts through static analysis of code. Most of these studies
rely on static analysis of the code in an offline setting, i.e., analysis of code without its execution
(e.g., Vandal [9], Slither [10], Oyente [11], Securify [12], Solc-Verify [50], and Mythril [51]).
Mostly based on the patterns of known insecure behavior in code, these studies view contracts
in isolation, hence, failing to take into account dynamic contract interactions occurring on the
chain after contract’s deployment. Our approach is complementary to these static analysis tools,
as it aims to detect all suspicious accounts not limited to those containing contract’s code.

More recently, the research has shifted to a general detection of malicious activity that involves
contracts already deployed on the blockchain. We broadly divide these studies based on the type
of features they leverage for their analysis (Table 1).

Code-based analysis. The significant number of the existing research studies for online security
analysis of smart contracts analyze a contract’s execution flow using extensive instrumenta-
tion of an Ethereum client (e.g., SODA [17], ECFChecker [21], Sereum [22], TXSpector [40],
EtherProv [41], and ContractGuard [39]. While this approach provides fine-grained runtime
information, it incurs significant resource consumption and requires modification of an Ethereum
client, consequently making this approach mostly not suitable for a large-scale detection.

Studies that do not leverage instrumentation require replying historic transactions similarly
incurring a significant cost (e.g., HORUS [42], EthScope [43]).

The vast majority of this research leverages patterns of known vulnerabilities. Along these stud-
ies, researchers use machine learning classification for identification of suspicious contracts.

1https://cyberlab.usask.ca/ethershield.html
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Table 1. The Overview of the Existing Studies Focusing on Detection of Malicious

Activity on Ethereum Blockchain

Related Work Year Detection focus Approach Features Type

Chen et al. [33] 2018 Ponzi XGBoost Transaction Activity & Code
Features

Steven et al. [24] 2020 Illicit XGBoost Transaction Activity Features
Chen et al. [28] 2020 Phishing GCN Transaction Activity Features
Lou et al. [34] 2020 Ponzi CNN Code Features
HoneyBadger [44] 2020 Honeypot contracts XGBoost Code Features
SADPonzi [45] 2021 Ponzi scam XGBoost Code Features
Li et al. [30] 2021 Phishing GNN Transaction Activity Features
Zhang et al. [35] 2021 Ponzi CatBoost Transaction Activity & Code

Features
Aljofey et al. [36] 2021 Ponzi KNN, DT, AdaBoost, RF, ET,

GB, XGBoost
Code Features

Wen et al. [31] 2021 Phishing SVM, KNN, AdaBoost Transaction Activity Features
Teng et al. [25] 2021 High risk XGBoost, LSTM, GRU, RF Transaction Activity Features
Hara et al. [27] 2021 Honeypot contracts XGBoost Transaction Activity & Code

Features
Wang et al. [46] 2021 Phishing Graph Embedding Transaction Activity Features
Zhang et al. [37] 2022 Ponzi LightGBM Transaction Activity & Code

Features
Xia et al. [32] 2022 Phishing Graph Embedding, XGBoost Transaction Activity Features
Hou et al. [47] 2022 Phishing GCN, CRF Transaction Activity Features
Luo et al. [48] 2023 Phishing Graph Embedding Transaction Activity Features
Li et al. [49] 2023 Phishing Deep Learning Transaction Activity Features

Among these are the approaches for detecting Ethereum smart contracts involved in Ponzi
schemes [33, 35–37, 45, 52]. As the Ethereum chain only retains smart contracts’ bytecode, these
studies disassemble bytecode to extract opcodes/operands n-gram features that are then used in
classification analysis. Similar approaches were introduced for detection of honeypot smart con-
tracts that aim to fraud users by leveraging hidden traps in the contract code [27, 44]. Camino
et al. introduced HoneyBadger, a symbolic execution-based technique that leveraged handcrafted
rules to discover honeypot techniques in the contract bytecode [44]. Hara et al. [27] also only re-
lied on the smart code features or detection. The approach employed the term-frequency inverse

document-frequency (TF-IDF) method to extract smart code features and word2vec embedding
to obtain the distributed representations of contract opcodes.

Transaction activity-based analysis. Most of the existing security analysis studies are designed
to analyze smart contract bytecode. A transaction-based approach has received a relatively less
attention.

As blockchain transactions naturally form a graph, most of these transaction-based detection
approaches leverage graph-based analysis. For example, observing the difference in the number
of incoming transactions for phishing accounts, Wen et al. [31] proposed to analyze transactions
of phishing accounts and their first-order neighbors to detect instances of phishing attacks in
Ethereum. Similar approaches based on the analysis of the adjacency relationship through transac-
tions for detection of phishing were developed by other researchers [28–30, 32, 46]. Chen et al. [28]
detected phishing addresses by treating accounts and transactions as nodes and edges in a Graph

Convolutional Network (GCN). Lou et al. combined Convolutional Neural Network (CNN)

with bytecode of smart contracts to detect Ponzi addresses [34]. Hou et al. [47] leveraged GCN and
Conditional Random Field (CRF), while Li et al. [49] used deep learning approach for phishing
accounts detection. The developed graph-based approach called SIEGE in addition to traditionally
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considered attributes of nodes (accounts) combined in the graph the contexts in which the nodes
are located in the graph. This perspective allowed to predict the future account behavior given
context.

Xia et al. [32] developed an attributed ego-graph embedding framework to represent Ethereum
transactions of phishing accounts. Learning graph embeddings for each of these ego-graphs using
Graph2vec [53] gives a set of features that are then used in machine learning classification to
distinguish phishing accounts. Later, Luo et al. [48] proposed a new random walk-based network
embedding algorithm called bias2vec to improve the detection accuracy. To offer an analysis
of patterns formed by interaction of transactions targeting phishing accounts, Wang et al. [46]
introduced transaction subgraph network (TSGN) model. TSGN utilizes the original raw
transaction information to produce a representation in the form of a graph, where individual
accounts are depicted as nodes and the transactions between them are shown as edges. The edges
are annotated with additional information, among which is the edge weight that denotes the
quantity of cryptocurrencies transferred by transactions. TSGN is the parsed to extract necessary
graphs-based features for classification using Random Forest classifier.

None of these graph-based methods aims for detection of multiple threats and are typically
geared towards particular type of malicious activity, which is in most cases phishing.

More generic models were considered by Farrugia et al. [24]. As opposed to the graph-based
analysis, Farrugia et al. developed a model for differentiating between benign and malicious ac-
counts based on 42 features describing accounts and the corresponding transactions. This is the
most closely related approach to our study.

Among the studies that investigated multi-classification for Ethereum smart contracts are Hu
et al. [25] and Shi et al. [26]. Both studies investigated broad contracts’ transaction behavior with an
objective to understand common patterns among contracts and affiliate them with high-level cate-
gories such as gaming, gambling, social, finance, and so on. Among these categories, Hu et al. [25]
also considered high-risk smart contracts for their potential to contain code vulnerabilities. Al-
though being overly broad in their analysis, both studies narrowed their focus in experiments
considering only a few basic account features (e.g., number of transactions, balance).

3 BACKGROUND

3.1 Ethereum

Proposed in 2013, Ethereum is a public blockchain that enables developers to create, deploy, and
execute programs on the Ethereum network. These programs, called smart contracts, are written
in high-level programming languages such as Solidity.

To deploy a contract on the Ethereum chain, a user compiles a contract to the Ethereum Vir-

tual Machine (EVM) bytecode and then deploys its compiled bytecode by issuing a transaction,
i.e., cryptographically signed instruction from his account. Once published on the blockchain,
contracts are immutable. The overview of this process is shown in Figure 1.

To execute a smart contract located on the chain, a user can initiate a transaction to an address
that contains the smart contract. Transactions require validation prior to publishing on the chain,
thus users are required to pay a “gas” fee for this computation. Gas is paid in Ethereum cryptocur-
rency, called ether. In addition to this, each account has a balance in Ether that can be modified by
sending it some ether.

3.2 Ethereum Accounts

To support pseudo-anonymity, users on the blockchain are identified by unique accounts. There
are two types of accounts on Ethereum: Externally owned account (EOA) and contract account.
Smart contract account is an account associated with a public contract that resides on a chain.
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Fig. 1. An overview of the Ethereum blockchain.

The address of a smart contract account is derived from the owner’s address. However, EOAs are
managed by users, thus the address of an EOA is determined by the user’s public key.

A user represented by an EOA can initiate a transaction that in turn can execute a smart contact
published on the chain. These transactions are known as normal transactions. Contract accounts
cannot initiate new transactions on their own, but can issue transactions in response to other
transactions they have received. For example, smart contracts may interact with each other by
invoking the corresponding functions in other contracts. These kinds of transactions are called
internal transactions.

3.3 Ethereum Standards

Ethereum is a powerful platform that is leveraged for a variety of services. Among these services
is the exchange of tokens that can represent various functionality. To help facilitate the interac-
tions between different tokens, several standards were developed (e.g., ERC20, ERC721, ERC1155).
Among these standards, ERC20 is the most commonly used interface standard. Hence, smart con-
tracts implementing the interactions among tokens have to follow this standard. Any transactions
related to the transfer of tokens under a given interface standard are labeled as such, e.g., transac-
tions on the ERC20 interface standard are referred to as ERC20 transactions.

4 THE PROPOSED APPROACH

One of the significant obstacles in prompt detection of malicious activity on Ethereum is the avail-
ability of context required to identify it. For example, phishing scams are not immediately apparent
on the chain, and therefore their identification is typically triggered by users’ reports indicating
suspicious behavior, consequently leading to delayed detection. The delay in detection presents a
more significant problem in blockchain than in any other domain due to the inherit immutability
of accounts. Without a possibility to remove malicious accounts, the only viable option is to alert
users of the blockchain platform and label the corresponding accounts as malicious.

Our objective is to offer an expedited detection even when data is limited. To address this, Ether-
Shield relies on the training and detection stages presented in Figure 2.

The training component relies on a set of accounts known to be abnormal or malicious and
labelled either manually or automatically. The accounts are augmented with the corresponding
smart contracts and historical transaction information extracted from the blockchain. The
contracts and transactions are then passed to the parsing module that extracts feature vectors
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Fig. 2. The workflow of EtherShield.

from a disassembled smart contract’s bytecode and time-interval-based analysis of transactions’
data. For a given contract, the decoding process decodes the bytecode to opcodes and operands.
Ethereum’s smart contracts and the underlying bytecode are immutable, hence, once extracted,
opcodes and operands of a smart contract remain the same. Conversely, transaction information
is subject to change over time intervals, leading to varying transaction-related feature vectors that
reflect the specific time intervals in consideration. The resulting feature vectors are synchronized
to characterize a smart contract behavior per time interval. Since each time interval embeds a
different amount of information, the training module generates classification models per time
interval.

In the detection stage, we are provided with a new account to determine whether it exhibits any
malicious behavior. For this account, we retrieve the available transactions that occurred during
a defined time interval. As opposed to the training stage, the goal is not to extract all historical
information but rather information for the time interval that is available (e.g., if contract was
recently deployed on the chain) or the most effective for malicious behavior detection (e.g., if a
significant time has passed since the publishing of a contract). This helps facilitate rapid detection
of malicious behavior. Note that in some cases, e.g., when a significant amount of time has passed,
selecting a smaller time interval also means that an original contact may not be retrieved from the
chain. Hence, it is critical for detection to be flexible enough to accommodate these scenarios and
provide accurate detection based only on transaction activity.

Similarly to the training stage, the parsing module then extracts contract’s opcodes and
operands (if contact is available), and temporal feature vectors from the corresponding blockchain
transactions. The classification model is pulled from the set of generated models, depending on
the selected time interval. The classification analysis module then analyzes contracts behavior to
detect malicious activities.

EtherShield leverages an incremental approach to address cases where detection result is not suf-
ficiently accurate for a current time interval, e.g., classification rate is below a tolerable threshold.
In these cases, transaction information for a larger time interval is requested and classification
analysis is repeated. This only becomes robust due to time interval-based analysis of the proposed
approach. The availability of pre-trained time interval-based models allows to quickly adjust the
analysis interval and obtain results with a larger amount of data. Note that incremental approach
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does not require presence of all available data and hence allows for immediate detection, while
enabling an incremental improvement in detection accuracy as more data becomes available.

4.1 Parsing Module

For a given account addresses, our parsing module retrieves the corresponding transaction history.
For each transaction, we retrieve timestamp, sender, and receiver addresses, amount of ether trans-
ferred, and data field. If an account is associated with a contract, then we also retrieve contract’s
bytecode. Our analysis aims to encompass insecure behavior regardless of the contract presence.
Hence, we analyze characteristics exhibited both at the code level (if contract is present) and trans-
action level. Based on the extracted information, the parsing module extracts transaction activity

features characterizing an account’s transaction history and code features characterizing the smart
contract bytecode deployed on the chain.

4.1.1 Transaction History Analysis. We refer to the activity of an account regardless of its type
as a transaction activity. To capture malicious activity, we extract characteristics providing statis-
tical and financial context for each account and the status of transactions (if reverted).

Statistical features: To represent account interactions, we aggregate information about outgoing
and incoming transactions through basic measurements such as total frequency, time interval
between the first and the last transaction, average time between transactions, the longest time
between transactions, and ratios between types of transactions. Depending on the transaction
type, transaction activity may reflect the characteristics of various attacks. For instance, phishing
attack is characterized by multiple normal transactions invoking a contract, followed by one
or a few internal transactions to transfer the funds. To fully capture attack characteristics, we
calculate statistical features for normal, internal, and ERC20 transactions.

Reverted features: The majority of transactions after a successful validation become a part of
the blockchain. A smaller portion of transactions, however, fail this step. These are known as re-
verted transactions. Although commonly ignored, they comprise an important part of blockchain
ecosystem. Reverted transactions serve as a mechanism to prevent smart contracts exhibiting ab-
normal behavior from being published on the chain [54]. We thus include these transactions in
our analysis.

Financial features: To understand how the flow of funds impacts detection of malicious activi-
ties, we derive supplemental features describing the amounts of ether accompanying each of the
statistical features.

Summary: Overall, we derive 263 features characterizing transaction activity, including 145
statistical, 3 reverted, and 115 financial features, shown in Table 2. Note that, depending on the
feature, we calculate a different set of values. For most features, we extract values corresponding
to the normal transactions, internal transactions, ERC20 transactions, ERC721 transactions,
ERC1155 transactions, and all transactions cumulatively. For some features this is not feasible.
For example, at the time of analysis, reverted transactions were only provided by Etherscan
platform for normal and internal transactions, thus the corresponding calculation only includes
number of reverted normal and internal transactions and all reverted transactions. Other features
are intentionally constructed to reflect single types of transactions, e.g., the proportion of ether
amount sent by normal transactions.

4.1.2 Decode Smart Contract Bytecode. We augment transaction activity with features de-
rived from the corresponding smart contract bytecode. Since we are dealing with contracts
already deployed on the blockchain, only their bytecode is typically available for analysis. We
disassemble contract’s bytecode and use n-gram approach to tokenize the contract’s bytecode
and opcodes/operands stream. In our tokenization, we employ n = 4, i.e., the bytecode and
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Table 2. Transaction Activity Features

Statistical features:

The average time between incoming transactions (6) The average time between outcoming transactions (6)
Time since the first until the last transaction (6) The longest interval between two transactions (6)
The shortest interval between two transactions (6) The total number of transactions (6)
The total number of incoming transactions (6) The total number of outcoming transactions (6)
The number of unique incoming addresses (6) The number of unique outcoming addresses (6)
The proportion of unique incoming address out of all incoming transactions (6) The proportion of unique outcoming address out of all outcoming transactions (6)
The proportion of normal incoming transactions out of all normal transactions (1) The proportion of normal outcoming transactions out of all normal transactions (1)
The proportion of normal transactions out of all transactions (1) The proportion of normal incoming transactions out of all incoming transactions

(1)
The proportion of normal incoming transactions out of all transactions (1) The proportion of normal outcoming transactions out of all outcoming transactions

(1)
The proportion of normal outcoming transactions out of all transactions (1) The proportion of internal transactions out of all transactions (1)
The proportion of internal incoming transactions out of all internal transactions (1) The proportion of internal outcoming transactions out of all internal transactions

(1)
The proportion of internal incoming transactions out of all incoming transactions
(1)

The proportion of internal incoming transactions out of all transactions (1)

The proportion of internal outcoming transactions out of all outcoming
transactions (1)

The proportion of internal outcoming transactions out of all transactions (1)

The proportion of ERC20 transactions out of all transactions (1) The proportion of ERC20 incoming transactions out of all ERC20 transactions (1)
The proportion of ERC20 outcoming transactions out of all ERC20 transactions (1) The proportion of ERC20 incoming transactions out of all incoming transactions (1)
The proportion of ERC20 incoming transactions out of all transactions (1) The proportion of ERC20 outcoming transactions out of all outcoming transactions

(1)
The proportion of ERC20 outcoming transactions out of all transactions (1) The proportion of ERC721 transactions out of all transactions (1)
The proportion of ERC721 incoming transactions out of all ERC721 transactions (1) The proportion of ERC721 outcoming transactions out of all ERC721 transactions

(1)
The proportion of ERC721 incoming transactions out of all incoming transactions
(1)

The proportion of ERC721 incoming transactions out of all transactions (1)

The proportion of ERC721 outcoming transactions out of all outcoming
transactions (1)

The proportion of ERC721 outcoming transactions out of all transactions (1)

The proportion of ERC1155 transactions out of all transactions (1) The proportion of ERC1155 incoming transactions out of all ERC1155 transactions
(1)

The proportion of ERC1155 outcoming transactions out of all ERC1155 transactions
(1)

The proportion of ERC1155 incoming transactions out of all incoming transactions
(1)

The proportion of ERC1155 incoming transactions out of all transactions (1) The proportion of ERC1155 outcoming transactions out of all outcoming
transactions (1)

The proportion of ERC1155 outcoming transactions out of all transactions (1) The proportion of all incoming transactions out of all transactions (1)
The proportion of all outcoming transactions out of all transactions (1) The average number of transactions per day (6)
The average number of transactions per hour (6) The average number of incoming transactions per day (6)
The average number of outcoming transactions per day (6) The average number of incoming transactions per hour (6)
The average number of outcoming transactions per hour (6)
Reverted features:

The number of reverted transactions (3)
Financial features:

The minimum amount ever received (6) The maximum amount ever received (6)
The average amount received for each transaction (6) The minimum amount ever sent (6)
The maximum amount ever sent (6) The average amount sent for each transaction (6)
The total amount ever received (6) The total amount ever sent (6)
The average amount transferred per day (6) The average amount transferred per hour (6)
The average incoming amount per day (6) The average outcoming amount per day (6)
The average incoming amount per hour (6) The average outcoming amount per hour (6)
The total amount transferred by outcoming and incoming transactions (6) The proportion of amount transferred by normal transactions out of all amount

transferred (1)
The proportion of amount sent by normal transactions out of all sent amount (1) The proportion of amount sent by normal transactions out of all amount

transferred (1)
The proportion of amount received by normal transactions out of all received
amount (1)

The proportion of amount received by normal transactions out of all amount
transferred (1)

The proportion of amount transferred by internal transactions out of all transferred
amount (1)

The proportion of amount sent by internal transactions out of all sent amount (1)

The proportion of amount sent by internal transactions out of all amount
transferred (1)

The proportion of amount received by internal transactions out of all received
amount (1)

The proportion of amount received by internal transactions out of all amount
transferred (1)

The proportion of amount transferred by ERC20 transactions out of all amount
transferred (1)

The proportion of amount sent by ERC20 transactions out of all sent amount (1) The proportion of amount sent by ERC20 transactions out of all amount
transferred (1)

The proportion of amount received by ERC20 transactions out of all received
amount (1)

The proportion of amount received by ERC20 transactions out of all amount
transferred (1)

The proportion of amount transferred by ERC721 transactions out of all amount
transferred (1)

The proportion of amount sent by ERC721 transactions out of all sent amount (1)

The proportion of amount sent by ERC721 transactions out of all amount
transferred (1)

The proportion of amount received by ERC721 transactions out of all received
amount (1)

The proportion of amount received by ERC721 transactions out of all amount
transferred (1)

The proportion of amount transferred by ERC1155 transactions out of all amount
transferred (1)

The proportion of amount sent by ERC1155 transactions out of all sent amount (1) The proportion of amount sent by ERC1155 transactions out of all amount
transferred (1)

The proportion of amount received by ERC1155 transactions out of all received
amount (1)

The proportion of amount received by ERC1155 transactions out of all amount (1)

Values in parentheses indicate the number of values calculated for each feature.
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Fig. 3. Time interval-based feature extraction.

opcodes/operands stream are broken into tokens, where each token is the corresponding hex
number representing a byte, one opcode, or one operand. (We use 4-gram for parsing bytecode,
parsing the combination of opcode and operand codes, but take one opcode and one operand as
a single feature.)

To rank the resulting n-grams, we calculate TF-IDF (term frequency-inverse document fre-

quency) that evaluates the importance of a token for a given contract as follows:

TF − IDF (w, c,C ) = log (1 + f (w, c )) · log
N

f (w,C )
,

where f (w, c ) is the frequency of a token w in a contract c and N is the number of contracts in
the collection C .

Based on the TF-IDF score, we rank our n-gram features and select the top 50 features for each
category to form our feature set.

Our final feature set includes 453 code features, i.e., the overlapped top 50 features for each of
six categories (malicious and non-malicious addresses), and smart contract features extracted from
bytecode, opcode, and operands. This includes 108 bytecode features (represented as n-grams),
155 opcodes and operands features (represented as n-gram), 123 operand features and 67 opcode
features.

4.1.3 Feature Synchronization Based on Time Interval. To capture temporal patterns in transac-
tion activity, we extract features per time interval as shown in Figure 3. The duration of the interval
is crucial for temporal patterns. Intervals of different lengths that share the same activity may still
reveal different information. For example, the longer period of time is likely to accumulate more
transactions revealing malicious behavior, yet shorter periods of time may not have enough trans-
actions to form an anomalous pattern, but are more beneficial to early detection in an event such
malicious activity is detected.

In our training stage experiments, we explore a range of time intervals: 1 hour, 3 hours, 6 hours,
12 hours, 1 day, 3 days, 7 days, 14 days, 30 days, 90 days, 180 days, 365 days, 3 years, 5 years, and
10 years. For each of these intervals, we use 263 transaction activity features that cover individual
intervals. Thus, the transaction activity features for each time interval along with the correspond-
ing code features form a feature vector for a given interval. We experimentally provide insights
into impact of granularity of these time intervals on the accuracy of detection.

During the detection stage, however, the feature vector for a given Ethereum account is formed
based on code features (if contract is present), and transaction features calculated for one time
interval only.

4.2 Time-interval-based Model Training

The classification model is trained based on each set of selected time intervals. The participat-
ing features are selected accordingly, e.g., only features covering 1-hour interval are used in the
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training process. This process generates several time-interval-based models that can be used in
on-demand classification analysis.

Given a variety of time intervals, we conduct a feature selection analysis. For each time interval,
we select the set of best performing features and retain it for further analysis.

4.3 Classification Analysis

The classification module is responsible for analysis of account behavior given a feature vector for
a specific time interval.

To guide the accuracy of detection outcome, we employ an additional verification step that can
confirm whether achieved detection result is acceptable, e.g., misclassification rate is below a tol-
erable threshold. If more accurate analysis is required, then transaction information for a larger
time interval is requested and classification analysis is repeated with a newly obtained feature vec-
tor. For example, if one hour interval proved to be insufficient, then transaction features covering
3-hour interval may be requested and used in the following detection.

Over the past few years, the research on detection of malicious blockchain activity leveraged
several classification algorithms in their analysis. In this work, we explore the performance of
these classifiers previously employed by other studies: Random Forest (RF) [25, 36, 55], Decision

Trees (DTs) [36], XGBoost [24, 25, 33, 36], and LightGBM [37, 56].
DTs [57] is an interpretable algorithm that produces a sequence of rules to classify the data for a

given target. Hence, every decision made by an algorithm can be associated with a corresponding
path, which provides a high-level interpretability. With this advantage though the classifier can be
unstable when small variations in the data that can result in generation of a completely different
tree. It is also known to be prone to overfitting. An RF classifier [58] is an ensemble that fits a
number of decision trees on various sub-samples of datasets and uses the average to improve the
predictive accuracy of the model.

While RF and DT are popular classifiers, XGBoost and LightGBM have recently seen an increase
in popularity within the data science community.

The decision tree algorithms (including models such as XGBoost and LightGBM) integrate dif-
ferent hypotheses in a single model and thus provide better performance than decision tree-based
classifiers.

XGBoost [59] is a decision-tree-based algorithm that utilizes the gradient boosting architecture.
Gradient boosting is a machine learning ensemble method that involves combining multiple weak
models to create a strong predictive model. The architecture of a gradient boosting model typically
involves creating decision trees as the weak learners and then combining them using a boosting
algorithm. XGBoost is an ensemble machine learning method that supports three types of gradi-
ent boosting: gradient boosting, stochastic gradient boosting, and regularized gradient boosting,
which provides a faster classification. XGBoost supports auto pruning, which stops the growth of
the decision tree to help reduce overfitting and improve accuracy.

LightGBM [60] is a novel Gradient Boosting Decision Tree algorithm (GBDT) that inte-
grates results of multiple weak learners to improve classification result. As such, the model is
resistant to overfitting and results are often better than with a single weak learner.

5 EXPERIMENTAL SETUP

5.1 Data

For our analysis, we have collected data representing five malicious categories: phishing, Ponzi
schemes, coin laundering, honeypot contracts, and high-risk contracts associated with known code
vulnerabilities, such as reentrancy bugs, arithmetic overflow, unchecked low-level calls (for details,
see Reference [61]).
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Table 3. Dataset

Category Total accounts Smart Contract accounts EOA accounts
Phishing 5,186 215 4,971
Ponzi 298 283 15
Coin laundering 826 1 825
Honeypot 1,162 1,070 92
High Risk 2,472 2,421 51
Benign 5,320 391 4,929
Total 15,264 4,381 10,883

Table 4. The Parameters of the Classification Algorithms

Alg. Hyperparameters Classifier

RF criterion=’gini’, max_features=’sqrt’, min_samples_leaf=1,
min_samples_split=2, n_estimators=115

Nonlinear

DT criterion=’log_loss’, max_depth=13, min_samples_leaf=3,
min_samples_split=17, splitter=’best’

Nonlinear

XG gamma=0, max_delta_step=0, max_depth=7, min_child_weight=5 Nonlinear
LGBM max_delta_step=8, max_depth=8, num_leaves=21 Nonlinear

Phishing contracts and contracts associated with coin laundering, i.e., contracts performing ac-
tivities with stolen coins, were retrieved from Etherscan.io, an analytics platform for Ethereum.
Etherscan’s labelling of malicious smart contracts is broad and imprecise. We thus extracted all
accounts labelled as a “Phish/Hack” and through manual analysis filtered out those that included
other tags, leaving only phishing tags. For coin laundering, we collected accounts labelled a “Bit-
point Hack,” a “Cryptopia Hack,” a “EtherDelta Hack,” a “Lendf.Me Hack,” and a “Upbit Hack,”
resulting in 826 addresses.

We obtained a dataset with 184 Ponzi addresses used in Massimo et al.’s study [62] and
augmented it with the additional samples used by Chen et al. [38] and He at al. [63] studies. After
de-duplication, our final set contained 298 Ethereum addresses associated with Ponzi scheme
activities. We used a public project collected by the HoneyBadger Project [64] with additional 24
samples obtained from Torres et al.’s study [65].

The high-risk samples were selected from the dataset provided by Liao et al. [61]. We have
randomly selected 2,472 addresses, 2,421 of which were associated with smart contracts accounts.
In our analysis, we have used a set of 5,320 benign addresses employed by Kumar et al. [66].

The overview of our dataset is shown in Table 3. Since our analysis is based on the transaction
history of each address, we leveraged the Etherscan.io API [67] to extract transaction history,
contract information, and ether amounts.

5.2 Experimental Parameters

The system was implemented using the Python language (v.3.8.4) with the scikit-learn library
(v.0.23.1). We adopted Python pyevmasm library [68] to decode the bytecode to opcodes and
operands. A summary of the classification algorithm hyperparameters is given in Table 4. For
hyperparameter optimization, we used the grid search approach. Four-fold cross-validation was
employed to measure the accuracy of the machine learning model. All experiments were performed
on a Ubuntu server equipped with 32 GB of RAM and 10 CPU cores.
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6 EXPERIMENTS

We perform several experiments to validate our approach and examine its effectiveness for vari-
ous time intervals. To estimate accuracy of analysis, we used stratified 4-fold cross-validation. To
evaluate our results, we use weighted-average accuracy, accuracy in short, defined as a percentage
of accounts correctly detected as benign or attributed to the corresponding threats over the total
number of accounts, where accuracy of each class is weighted by the number of accounts from
that class.

6.1 Baseline Experiment

To provide a baseline for our experiments, we mimic the conventional approaches that typically
employ all available for the analysis data. For these experiments, we use all available features
without feature selection.

Our dataset includes accounts that exhibited transaction activity for almost 10 years. Figure 6
shows the frequency of accounts with the available transaction history, i.e., an elapsed time be-
tween the first and the last transaction for accounts available in our dataset.

The largest amount of 2,952 accounts in our set encompass less than one hour worth of transac-
tions. A significant amount of accounts (2,108 and 1,881) have an active account history spanning
3 years and 5 years. It is interesting to note that the vast majority of accounts (both benign and
malicious) become significantly less active after 5 years. Most accounts do not show any activ-
ity after 5 years of their appearance on the chain. The longest time span that transactions cover
for some accounts is up to 10 years (330 accounts). In our set, no account has been active for 10
or more years. Hence, our baseline, non-time-based analysis uses all transactions (up to 10 years,
when available) for all accounts. Note that not all contracts placed on the blockchain are used by
the community, i.e., some contracts are never executed by users. In these cases, contracts have
no history beyond the initial transaction that places the contract on the chain. Similarly, a small
percentage of EOA accounts has no transaction history beyond 1 transaction. To indicate these
cases, we use a “no history” label.

The baseline analysis results are presented in Table 5. Since our dataset contains labels indicat-
ing a specific threat, for binary classification, we have relabelled the data as malicious or benign
regardless of the specific malicious activity type.

Our results with smart contract features confirm the limitations of code-based only analysis. The
accuracy does not exceed 67% in binary classification and 61% in multi-class classification. This
is consistent with other studies showing better performance of code-based features on contracts
containing code vulnerabilities (we have one such category: high risk) and lower accuracy for
threats unrelated to code [25, 69].

The accuracy with transaction activity features reaches 90%–93%. However, we see a further
improvement in accuracy with the combination of code-based and transaction activity features.

While, in general, binary classification performs well, the goal of our analysis is to differentiate
various types of malicious activity.

Among four classification algorithms we use, XGBoost and LightGBM performed the best across
all experiments. We therefore conduct the rest of our experiments with these two algorithms.

6.2 Feature Selection Analysis

Our baseline analysis was performed on all 716 (453 code and 263 transaction) features. We con-
ducted feature selection to assess the importance of these features in our analysis. Both XGBoost
and LightGBM offer similar metrics to quantify the importance of features in the trained model.
Since both algorithms are based on Gradient Boosting Decision Trees, the feature importance is
measured by the number of times a feature is used to split the data across all trees [59, 60]. In
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Table 5. Classification Results for Baseline Experiments

RF DT XGBoost LightGBM
Binary classification

Transaction activity 93.33% 90.23% 94.01% 93.64%
Smart contract features:

Bytecode 67.22% 66.93% 67.28% 67.25%
Opcodes only 67.15% 66.74% 67.19% 67.17%
Operands only 67.23% 67.05% 67.24% 67.28%
Opcodes&Operands 67.20% 66.80% 67.22% 67.23%

All features 94.06% 91.27% 95.30% 94.93%

Multi-class classification
Transaction activity 88.34% 83.98% 90.25% 89.91%
Smart contract features:

Bytecode 61.00% 59.60% 61.21% 61.29%
Opcodes only 60.64% 58.58% 60.69% 60.78%
Operands only 60.78% 59.31% 60.88% 60.99%
Opcodes&Operands 60.99% 59.76% 61.31% 61.35%

All features 93.17% 89.86% 94.91% 94.81%

Fig. 4. Feature importance analysis (multi-class

classification, XGBoost).
Fig. 5. Feature importance analysis (binary

classification, XGBoost).

XGBoost, this measure is referred to as “Weight,” while in LightGBM, it is named “Split” [70, 71].
In this study, we evaluate features based on the accuracy loss compared to the baseline analysis
performed with all features. For each time interval, we analyze accuracy using the top-ranked
subsets of features that are selected based on the feature importance. The accuracy of the models
using these selected feature sets are presented in Figures 4 and 5.

As our analysis shows, regardless of time interval, the model performance follows the same
pattern. With 20 top-ranked features, both algorithms achieve fairly high and although slightly
inconsistent across intervals accuracy (75%–94%). The performance of the models improves with
50 features. The accuracy drastically decreases when smaller sets of features are used. For example,
in multi-class classification with XGBoost algorithm, for 5-year time interval, the performance
drops from 93.27% (the top 50 features) to 86.38% (the top 10 features). Similarly, in binary analysis,
accuracy drops from 94.01% (the top 50 features) to 92.66% (the top 10 features). With the larger
feature sets (more than 50 features), the accuracy plateaus show no noticeable improvement.

The close review of the top 50 features sets for different time intervals revealed a significant
overlap between sets. To streamline further analysis, we combined the top 50 features across
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Fig. 6. The available transaction history for the dataset accounts.

different time intervals, deduplicated them, and used the resulting sets for further analysis. Hence,
we obtained the top 87 (XGBoost) and 89 (LightGBM) features for multi-class classification, and
89 (XGBoost) and 102 (LightGBM) features for binary classification.

To help analyze the significance of features in the resulting set, we calculated features’ frequency
as the number of times a feature is used to split the data across all trees (referred to as metrics
“Weight” in XGBoost and “Split” in LightGBM). The resulting sets and the corresponding frequency
are listed in Tables 8, 9, 10, and 11.

Across these sets, it is evident that transaction activity features dominate these sets, with code
features considered less useful in this analysis. For example, sets selected for multi-class classi-
fication have 14 (XGBoost) and 31 (LightGBM) code features. Even less code features are found
in feature sets generated for binary classification (8 features with XGBoost and 17 features with
LightGBM).

It is interesting to note that the top features for both binary and multi-class classification
are related to the amount of ether transferred between accounts. Intuitively, this is expected, as
malicious actions within the blockchain ecosystem are primarily motivated by financial gains.
This intuition is further emphasized by the features characterizing patterns of funds transfer
(e.g., interval between transactions, the time since last transaction) appearing among the top 15
features. Hence, the funds transferring patterns serve as one of the primary indicators of malicious
behavior.

Regardless of classification type and algorithm, the majority of features across four sets are
identical. The following experiments are conducted with the selected top feature sets.

6.3 Time-based Experiments

The existing methods used to detect malicious activity in Ethereum typically depend on having
access to the complete transaction history of the accounts being analyzed. Our experiments have
validated the high accuracy of this approach. However, in real-life situations, this approach is often
impractical, since delaying detection for several years is frequently not feasible.

In this set of experiments, we aim to explore time-based nature of the EtherShield approach.
Our analysis is focused on the following time intervals: 1 hour, 3 hours, 6 hours, 12 hours, 1 day,
3 days, 7 days, 14 days, 30 days, 90 days, 180 days, 365 days, 3 years, 5 years, 10 years. Figures 7
and 8 show the classification accuracy across these time intervals.

As expected, accuracy increases as more transaction information becomes available. However,
the more practical aspect in this context is how much information is sufficient for reliable detection.
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Fig. 7. EtherShield detection results with XGBoost

algorithm.

Fig. 8. EtherShield detection results with LightGBM

algorithm.

Our results indicate that transactions occurred within 1 hour can be used to predict with 86.84%
accuracy whether or not an account is malicious (LightGBM algorithm). We can observe that in-
creasing time interval further improves performance to 89.43% with 7-day time interval and to
92.20% with 1-year interval. This increase is not significant, indicating that the analysis of initial
behavior presents a viable option for early detection of malicious activity. Note that the perfor-
mance of both LightGBM and XGBoost algorithms in these cases is similar.

The detection of specific threats follows a similar pattern. Multi-class classification achieves
86.39% on 1-hour interval data, 89.22% with 7-day time interval, and 91.99% with 1-year interval
(LightGBM algorithm). The best accuracy of 95.02% in binary and 94.71% multi-class classification
is obtained with 10-year time interval, i.e., all available data for the analyzed accounts (XGBoost
algorithm).

This observation establishes the basis for our incremental approach to offer a robust and accu-
rate detection. If a smaller time interval appears to be insufficient, then transaction data features
covering the next time interval are requested and classification analysis is repeated with a feature
vector covering a larger interval.

For comparison purposes, we have also conducted experiments with transaction activity fea-
tures only. The baseline experiments showed that transaction features are able to provide a lower
(1%–5%), yet are still comparable to all features accuracy.

However, the time-based analysis revealed that the transaction features alone are not sufficient
to provide a reliable detection. For example, with multi-class classification, we were not able to
achieve even 80% on 1-hour time-interval data, compared to 86.39% accuracy obtained with all
features (LightGBM algorithm).

6.4 Analysis of Time-interval Generalization

We showed the efficiency of an incremental approach to boost detection accuracy by gradually
employing larger time intervals.

Pre-training models for different time intervals in practice, however, requires presence of data
for all intervals. Since we advocate for incremental approach, we assume an ability of approach
to train models as data becomes available on the blockchain. Yet, training models for larger time
intervals requires time. Hence, it may be practical in real-life deployment to consider situations
when models pre-trained on smaller time intervals are leveraged in analysis of, for instance, 3- or
6-hour transaction data, while models for larger time intervals are being trained. This allows to
avoid a delay in detection.
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Fig. 9. Binary detection results for models trained

with smaller time intervals.

Fig. 10. Binary detection results for models trained

with larger time intervals.

Fig. 11. Multi-class detection results for models

trained with smaller time intervals.

Fig. 12. Multi-class detection results for models

trained with larger time intervals.

Hence, one of the key questions in this context is the ability of a classifier model trained on
smaller time intervals to generalize, i.e., to handle new scenarios, beyond the time interval used in
the model training.

We evaluate the performance of EtherShield for this scenario. The results of model’s perfor-
mance trained on different time intervals with XGBoost are shown in Figures 9, 10, 11 and 12.
In these experiments, transaction history for a given interval was used for training the classifica-
tion model, while the rest of available transaction information was left for testing. For example, a
model trained on transaction history accumulated over 1 year was tested on features calculated
over 1 hour, 3 hours, 6 hours, and so on, time intervals. Note that this is appropriate in our case, as
the features are cumulative, i.e., transaction history accumulated over 1 year incorporates features
calculated on all transactions collected for 1-year time interval. Implicitly, this set also includes
individual transactions that occurred in the first hour of account placed on the chain. However,
features calculated for 1-hour time interval similarly include only cumulative information on all
transactions that occurred during this hour. When the testing interval coincided with the training
interval, we have only performed cross-validation for a given interval data.

As the results show, the least variability in detection performance is exhibited by model trained
on 1-hour data for multi-class classification and 3-hour data for binary classification, i.e., from
86.77% with 1-hour interval to 90.07% accuracy with 3 years (multi-class classification), and in
binary analysis, from 87.25% accuracy with 1-hour interval to 90.40% with 5 years. Most models
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Fig. 13. Analysis of EtherShield performance for various malicious categories.

show a various decrease in accuracy with transaction history of over 3 years. This mostly due
to the lack of data as, for example, analysis on 10-year time interval only covers 330 accounts
compared to 2,108 accounts with 3-year history.

Minimizing the time interval necessary for training the model is desirable in practice. Among
the trained models, most are able to consistently achieve the accuracy above 86%. The difference
in performance between the models was in most cases negligible.

Evaluating the length of time interval, several models stood out. For example, models trained
on data spanning 7- and 14-day time intervals and similarly, models trained on 1-hour, 3-hours,
6-hours, 12-hours, and 1-day interval data exhibited minor (<0.05%) difference in performance
in binary classification. In multi-class analysis, 12-hour model showed a slightly better overall
performance.

The practical implication of these experiments is a model trained with a short transaction history
can still be effective in accurately predicting account behavior for an extended period (up to 5 or
10 years) when data is limited.

6.5 Analysis of EtherShield Performance for Various Malicious Categories

Our baseline experiments showed the effectiveness of our approach in differentiating malicious
from benign accounts. We also demonstrated EtherShield’s efficiency in identifying multiple ma-
licious categories against benign accounts. The remaining aspect that we explore in this set of
experiments is whether our approach is more (or less) effective in detection of particular type of
malicious activity. To investigate this, we perform classification for each category of malicious ac-
counts separately, combining all remaining malicious accounts into a unified category labelled as
“others.” For these experiments, we employ the XGBoost algorithm. The resulting performance is
detailed in Figure 13.

In the context of classifying each individual malicious category, our approach demonstrates a
consistently high accuracy. For four malicious categories, we are able to achieve accuracy rates
exceeding 99% with just 1 hour’s data (specifically, 99.67% for Ponzi, 99.34% for Coin laundering,
99.68% for Honeypot, and 99.57% for High Risk). Subsequently, with more data, the accuracy re-
mains at a relatively high level with over 99% for these four categories. The only notable exception
is the phishing accounts. Although our approach can still quite accurately determine phishing ac-
tivity (86.92% with 1 hour’s data and 94.71% with 10-year time period), we observe less consistency.
We suspect it is related to the nature of the malicious activity that reveals itself only in communi-
cation between accounts, which naturally becomes more evident over time.

ACM Transactions on Internet Technology, Vol. 41, No. 1, Article 2. Publication date: January 2024.



EtherShield: Time Interval Analysis for Detection of Malicious Behavior on Ethereum 2:19

Fig. 14. The available transaction history for Farrugia et al.’s [24] dataset.

6.6 Comparative Analysis

To better assess the proposed approach, we compare the performance of EtherShield with two
techniques: detection of malicious accounts in Ethereum proposed by Farrugia et al. [24], and
TSGN, the Ethereum phishing classification approach developed by Wang et al. [46].

Our research introduces a novel approach involving a combination of multi-class classification
and time-based analysis, which lacks prior comparable methodologies. Consequently, to facilitate
meaningful comparisons and establish performance benchmarks, we incorporated several con-
temporary models that have demonstrated effectiveness in related studies and exhibit the closest
resemblance to our approach.

Farrugia et al.’s approach [24] addresses the identification of multiple types of malicious ac-
counts, making it the most closely aligned model. However, TSGN [46] achieves accurate results
on their own dataset. TSGN model employs several distinct feature sets, thereby contributing to a
more comprehensive representation of existing approaches in the field.

While both studies exclusively focus on binary classification, our research aims to investigate
the performance of their models in the context of binary and multi-class classification. We
implemented both approaches based on partially available code.2 In the experiments with
Farrugia et al.’s approach, we used 4-fold cross-validation. TSGN approach utilizes different graph
representation methods to extract features for phishing account identification. In our experiments,
we apply the methods used in the original study: Graph2Vec [53], Diffpool [72], U2GNN [73],
and Handcrafted Attributes [74], i.e., 10 features that include Number of addresses, Number of
transactions, Average degree of transaction subgraph, Percentage of leaf nodes, Network density,
and Average neighbor degree, Average clustering coefficient, Largest Eigenvalue of the adjacency
matrix, Average betweenness centrality, and Average closeness centrality.

For fair comparison, we obtained an original dataset employed by Farrugia et al.’s study that
consists of 4,676 accounts, 2,502 benign and 2,174 malicious.3

As the Figure 14 shows, the timespan of transactions available in Farrugia et al.’s dataset is
slightly different from what is found in our data. This set has a significantly less number of accounts

2The partial code for approach proposed by Farrugia et al. is available at https://github.com/sfarrugia15/Ethereum_Fraud_
Detection. Based on the available code, we have completed the implementation of their approach for a proper comparison.
The partial code for TSGN approach is available at https://github.com/GalateaWang/TSGN-master. Additional modifica-
tions were done in correspondence with the authors.
3We found five invalid accounts in their original dataset. Since the Ethereum data did not exist for these accounts, we
excluded them from our experiments.
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Table 6. Comparative Analysis (XGBoost)

Binary classification Multi-class classification
Time interval Our data Dataset [24] Our data

Farrugia et al. [24] EtherShield Farrugia et al. [24] EtherShield Farrugia et al. [24] EtherShield
Reported results – – 96.3% – – –
1 hour 82.70% 87.07% 82.87% 91.02% 74.69% 86.52%
3 hours 83.70% 87.36% 84.36% 90.68% 75.85% 86.47%
6 hours 84.21% 88.00% 84.68% 91.25% 77.20% 86.82%
12 hours 85.19% 88.28% 86.37% 90.81% 77.97% 86.96%
1 day 85.83% 88.44% 86.48% 90.53% 78.83% 87.40%
3 days 86.84% 88.86% 89.07% 90.27% 80.06% 88.23%
7 days 88.02% 89.49% 90.89% 90.81% 81.05% 88.79%
14 days 88.21% 89.52% 91.96% 91.68% 81.76% 89.03%
30 days 88.51% 90.32% 92.24% 92.62% 82.55% 89.60%
90 days 89.46% 90.76% 93.86% 93.54% 83.35% 90.12%
180 days 90.29% 91.43% 94.82% 94.74% 83.98% 90.87%
1 year 91.38% 92.08% 95.32% 94.89% 85.17% 91.33%
3 years 91.99% 93.46% 95.57% 94.70% 85.98% 92.97%
5 years 92.43% 94.94% 95.98% 95.49% 86.31% 94.53%
10 years 92.38% 95.02% 95.63% 97.07% 86.39% 94.71%

Table 7. Comparative Analysis

with TSGN [46]

Approach Accuracy
TSGN

Graph2Vec 72.68%
Handcrafted 71.05%
Diffpool 57.14%
U2GNN 70.76%

EtherShield 93.17%

with transactions scanning 1 hour, i.e., 212 accounts compared to 470 that we have in our set. The
largest number of accounts (775) has transactions spanning a period of 5 years, while in our set it
is 3 years. The majority of accounts in this set have no activity after five years of creation, with
only 242 accounts covering the 5-to-10-year range for transaction activity.

The results of comparative analysis given in Table 6 show that our proposed approach achieves
higher accuracy in most cases while providing a more fine-grained detection of malicious behavior.

In the original study, Farrugia et al. [24] reported 96.3% accuracy using XGBoost algorithm
using all available transactions (i.e., up to 10 years). This result is comparable to accuracy we
obtained with binary classification and Farrugia et al.’s data (95.63%) on a 10-year time interval.
Our approach performs better on both datasets for both binary and multi-class classification. Most
notably, our approach achieves a significantly higher accuracy in cases when data is limited, i.e.,
91.02% compared to 82.87% obtained by Farrugia et al.’s approach on 1-hour time-interval data
(binary analysis), and 86.52% compared to 74.69% with multi-class analysis. Since Farrugia et al.’s
original dataset is binary, multi-class analysis on their data is not feasible.

The comparative analysis results with TSGN approach are given in Table 7. The raw dataset
used by Wang et al. [46] was not available, hence, our analysis was only performed on our dataset
for all available data. Since the TSGN approach leverages graph representation of transactions, the
limited amount of transactions for some accounts resulted in very low performance. We therefore
only present the results for the whole dataset. In this analysis, EtherShield was tested on XGBoost
algorithm.
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In case of TSGN, we were similarly able to obtain significantly better results. Even in case of
supervised models such as Diffpool in 100 epochs and U2GNN in 50 epochs (we kept the epoch
parameter by the program default), the best accuracy (73.71%) is still significantly lower than Ether-
Shield’s result of 93.17%. This experiment demonstrates the advantages of our model, which pro-
duces better results than existing state-of-the-art approaches.

7 IMPLICATIONS

Determining maliciousness of Ethereum blockchain account activities is a challenging task. Re-
searchers often rely on the off-chain analysis of contract’s code to determine source code vulner-
abilities in advance to mitigate the potential problems before code deployment on the chain.

Analyzing activity on the chain has also been explored in research. Yet, in practice, detection of
malicious activities is still a mostly manual task. For example, EtherScan, a widely used Ethereum
blockchain explorer platform, relies on manual analysis by team experts to identify and label ma-
licious accounts,4 which is a time-consuming and error-prone process.

In this context, EtherShield presents several important practical implications:

— Malicious nature of accounts can be determined within 1 hour of accounts appearance on the

chain. Our experiments show that EtherShield can predict with 87.07% accuracy whether or
not an account is malicious. This provides a significant advantage, allowing for an expedited
detection of suspicious activity. While many studies are able to achieve comparable accuracy,
their reliance on all available data is infeasible in practice.

— Detection accuracy can be incrementally improved without a need to delay detection. The ex-
isting approaches rely on a single snapshot of data in time. Since typically all available data
is employed in detection, this limits capabilities of the approaches to offer an improved de-
tection. Our experimental results demonstrate that EtherShield can progressively improve
detection of malicious accounts by incrementally increasing the required amount of data for
analysis. The incremental approach is robust due to the availability of pre-trained for differ-
ent time intervals models, which enables quick adjustments to the analysis interval. With
this approach, detection accuracy can be improved without having to delay detection until
more data becomes available.

— EtherShield trained with a transaction history spanning a short time interval can still be effec-

tive in accurately determining the account behavior for a longer time period. We show that
EtherShield trained on data spanning 3- hour, 12-hour, 7-day, and 14-day time intervals can
equally accurately differentiate various types of malicious activity. While accuracy increases
as more transaction information becomes available, it is important to have an option to rely
on shorter time intervals when data is limited.

— EtherShield produces better results than existing state-of-the-art approaches. Our comparative
analysis shows that EtherShield achieves consistently better results than other approaches
on different datasets for both binary and multi-class classification, while providing a fine-
grained detection of malicious behavior types.

8 CONCLUSION

The unprecedented increase in number and diversity of malicious activities in Ethereum
blockchain has raised many concerns about the security of the platform, prompting developers
and researchers to explore new solutions to mitigate these threats. While a number of techniques
were proposed, their limited ability to differentiate threats and reliance on presence of all available
transactions limits their practical applicability.

4Personal correspondence.
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In this article, we introduced EtherShield, a novel time interval-based detection of malicious
accounts in Ethereum blockchain. Our analysis showed that EtherShield is effective in detecting
different types of malicious behavior even with limited (e.g., up to 1 hour) transaction history. The
incremental nature of the approach enables improvements in detection accuracy without a need
to postpone detection when more data becomes available.

The proposed approach outperforms the state-of-the-art techniques, offering better accuracy
in detection with less amount of data necessary for analysis. The proposed time-interval-based
approach presents significant advantages in practical detection, allowing to maintain detection
accuracy while significantly reducing the amount of transaction data necessary to determine the
malicious nature of activity.
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APPENDIX

Table 8. The Top Features for Multi-class Classification (XGBoost)

No. Features Frequency No. Features Frequency
1 The minimum amount ever received (Normal transactions) 5,426 2 The minimum amount ever received (All transactions) 4,884
3 The average amount received for each transaction (Normal

transactions)
3,453 4 The proportion of amount sent by normal transactions out of all

amount transferred
3,143

5 The shortest interval between two transactions (Normal
transactions)

3,065 6 The average time between outcoming transactions (Normal
transactions)

2,705

7 Time since the first until the last transaction (Normal
transactions)

2,679 8 The average incoming amount per day (Normal transactions) 2,627

9 The shortest interval between two transactions (All
transactions)

2,512 10 The average amount received for each transaction (All
transactions)

2,437

11 The average time between incoming transactions (All
transactions)

2,413 12 The minimum amount ever sent (Normal transactions) 2,346

13 The average time between incoming transactions (Normal
transactions)

2,247 14 The average incoming amount per day (All transactions) 2,245

15 The longest interval between two transactions (Normal
transactions)

2,173 16 The longest interval between two transactions (All transactions) 2,138

17 The proportion of amount received by normal transactions out
of all amount transferred

2,130 18 Time since the first until the last transaction (All transactions) 2,028

19 The total amount transferred by outcoming and incoming
transactions (All transactions)

1,811 20 The total amount ever received (Normal transactions) 1,591

21 JUMPDEST CALLVALUE ISZERO PUSH2 (opcodes and
operands)

1,531 22 The total amount transferred by outcoming and incoming
transactions (Normal transactions)

1,525

23 The average amount sent for each transaction (Normal
transactions)

1,446 24 The minimum amount ever sent (All transactions) 1,378

25 The total amount ever received (All transactions) 1,316 26 The total number of transactions (ERC20 transactions) 1,198
27 The minimum amount ever received (ERC20 transactions) 1,149 28 0x73ff (bytecode) 1,122
29 The total number of transactions (Normal transactions) 1,098 30 0x60 (operands) 953
31 The average amount sent for each transaction (All transactions) 897 32 The total number of transactions (Internal transactions) 893
33 The shortest interval between two transactions (ERC20

transactions)
815 34 The average time between outcoming transactions (All

transactions)
784

35 push1 (opcode) 751 36 The average time between incoming transactions (ERC20
transactions)

655

37 The proportion of normal outcoming transactions out of all
normal transactions

635 38 The total number of incoming transactions (Normal
transactions)

632

39 The proportion of unique incoming address out of all incoming
address (Normal transactions)

566 40 The proportion of normal outcoming transactions out of all
transactions

558

41 The proportion of normal incoming transactions out of all
transactions

528 42 The average number of incoming transactions per day (Normal
transactions)

502

43 The average time between outcoming transactions (ERC20
transactions)

497 44 The average amount transferred per day (Normal transactions) 476

45 The total amount ever sent (Normal transactions) 439 46 The proportion of all outcoming transactions out of all
transactions

394

47 The average amount received for each transaction (ERC20
transaction)

382 48 The proportion of unique incoming address out of all incoming
transactions (All transactions)

344

49 The proportion of amount received by ERC20 transactions out
of all amount transferred

327 50 The total amount ever sent (All transactions) 323

51 0x2 (operands) 312 52 calldatasize (opcode) 304
53 The average incoming amount per day (ERC20 transactions) 290 54 The total number of transactions (All transactions) 286
55 The average number of incoming transactions per day (All

transactions)
275 56 SWAP1 DUP2 MSTORE PUSH1 (opcodes and operands) 268

57 0x8fc (operands) 265 58 The longest interval between two transactions (ERC20
transactions)

251

59 The average number of outcoming transactions per day (Normal
transactions)

246 60 The average number of transactions per day (Normal
transactions)

220

61 The average number of transactions per day (All transactions) 208 62 SWAP1 DUP2 MSTORE PUSH1 (opcodes and operands) 197
63 The average number of outcoming transactions per day (All

transactions)
197 64 The proportion of normal transactions out of all transactions 171

65 The proportion of ERC20 incoming transactions out of all
ERC20 transactions

153 66 The total amount transferred by outcoming and incoming
transactions (ERC20 transactions)

150

67 0xfff1 (bytecode) 144 68 calldataload (opcode) 131
69 The proportion of amount sent by ERC20 transactions out of all

amount transferred
131 70 The average amount transferred per day (All transactions) 111

71 Time since the first until the last transaction (ERC20
transactions)

109 72 The number of unique outcoming addresses (Normal
transactions)

85

73 The average incoming amount per hour (Normal transactions) 73 74 The proportion of ERC20 incoming transactions out of all
transactions

72

75 push8 (opcode) 60 76 0xa0 (operands) 59
77 The average number of outcoming transactions per day (ERC20

transactions)
51 78 The average outcoming amount per day (Normal transactions) 48

79 The total number of incoming transactions (All transactions) 45 80 The proportion of ERC20 transactions out of all transactions 44
81 The minimum amount ever sent (ERC20 transactions) 43 82 The average outcoming amount per day (All transactions) 40
83 The proportion of normal incoming transactions out of all

normal transactions
40 84 The proportion of ERC20 outcoming transactions out of all

transactions
35

85 The proportion of amount transferred by normal transactions
out of all amount transferred

33 86 The total amount ever received (ERC20 transactions) 31

87 0x3 (operands) 26
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Table 9. The Top Features for Binary Classification (XGBoost)

No. Features Frequency No. Features Frequency

1 The minimum amount ever received (All transactions) 1,465 2 The minimum amount ever received (Normal transactions) 1,440

3 The proportion of amount sent by normal transactions out of all
amount transferred

1,057 4 The average amount received for each transaction (Normal
transactions)

900

5 The average time between outcoming transactions (Normal
transactions)

890 6 The shortest interval between two transactions (Normal
transactions)

866

7 Time since the first until the last transaction (Normal transactions) 855 8 The shortest interval between two transactions (All transactions) 789

9 The minimum amount ever sent (Normal transactions) 788 10 The average amount received for each transaction (All transactions) 786

11 The average time between incoming transactions (All transactions) 768 12 The longest interval between two transactions (All transactions) 733

13 Time since the first until the last transaction (All transactions) 725 14 The average time between incoming transactions (Normal
transactions)

712

15 The average incoming amount per day (All transactions) 710 16 The proportion of amount received by normal transactions out of
all amount transferred

668

17 The longest interval between two transactions (Normal
transactions)

635 18 The average incoming amount per day (Normal transactions) 613

19 The total amount transferred by outcoming and incoming
transactions (All transactions)

581 20 The total amount ever received (Normal transactions) 503

21 The total amount transferred by outcoming and incoming
transactions (Normal transactions)

499 22 The minimum amount ever sent (All transactions) 476

23 The average amount sent for each transaction (Normal
transactions)

445 24 The minimum amount ever received (ERC20 transactions) 429

25 The total amount ever received (All transactions) 417 26 The total number of transactions (ERC20 transactions) 352

27 The total number of transactions (Normal transactions) 344 28 The shortest interval between two transactions (ERC20
transactions)

327

29 The average time between incoming transactions (ERC20
transactions)

324 30 The average amount sent for each transaction (All transactions) 289

31 The proportion of normal outcoming transactions out of all normal
transactions

280 32 The total number of incoming transactions (Normal transactions) 254

33 The average time between outcoming transactions (All
transactions)

232 34 The total number of transactions (Internal transactions) 223

35 The total amount ever sent (Normal transactions) 217 36 The longest interval between two transactions (ERC20 transactions) 211

37 0x73ff (bytecode) 190 38 The total amount ever sent (All transactions) 190

39 The average number of incoming transactions per day (Normal
transactions)

183 40 Time since the first until the last transaction (ERC20 transactions) 179

41 The proportion of normal outcoming transactions out of all
transactions

175 42 SWAP1 DUP2 MSTORE PUSH1 (opcodes and operands) 173

43 The proportion of all outcoming transactions out of all transactions 167 44 The average amount received for each transaction (ERC20
transactions)

158

45 The average time between outcoming transactions (ERC20
transactions)

158 46 The proportion of normal incoming transactions out of all
transactions

151

47 The average incoming amount per day (ERC20 transactions) 146 48 The proportion of ERC20 incoming transactions out of all
transactions

137

49 The total number of transactions (All transactions) 115 50 The average number of incoming transactions per day (All
transactions)

114

51 The average amount transferred per day (Normal transactions) 111 52 The proportion of amount sent by ERC20 transactions out of all
amount transferred

100

53 The proportion of amount received by ERC20 transactions out of all
amount transferred

94 54 0x2 (operands) 88

55 The proportion of unique incoming address out of all incoming
transactions

85 56 The total amount ever received (ERC20 transactions) 84

57 The proportion of ERC20 incoming transactions out of all ERC20
transactions

78 58 The average number of outcoming transactions per day (Normal
transactions)

78

59 The proportion of normal transactions out of all transactions 76 60 The average number of transactions per day (Normal transactions) 74

61 The total amount transferred by outcoming and incoming
transactions (ERC20 transactions)

70 62 The average number of transactions per day (All transactions) 70

63 The average number of outcoming transactions per day (All
transactions)

70 64 The average incoming amount per hour (All transactions) 58

65 The average amount transferred per day (All transactions) 54 66 The proportion of internal incoming transactions out of all
transactions

52

67 The average amount received for each transaction (Internal
transactions)

48 68 The minimum amount ever sent (ERC20 transactions) 48

69 The proportion of unique incoming address out of all incoming
transactions (Normal transactions)

48 70 The proportion of normal incoming transactions out of all normal
transactions

46

71 The average incoming amount per hour (Normal transactions) 40 72 The average number of outcoming transactions per day (ERC20
transactions)

39

73 The average outcoming amount per day (All transactions) 38 74 swap1 (opcode) 34

75 The proportion of ERC20 transactions out of all transactions 27 76 The total number of incoming transactions (All transactions) 24

77 The average amount transferred per day (ERC20 transactions) 22 78 The proportion of amount sent by normal transactions out of all
sent amount

18

79 The minimum amount ever received (Internal transactions) 17 80 The proportion of amount received by ERC20 transactions out of all
sent amount

17

81 The number of unique outcoming addresses (Normal transactions) 17 82 The proportion of ERC20 outcoming transactions out of all
transactions per day

16

83 The average time between incoming transactions (Internal
transactions)

14 84 The proportion of incoming transactions out of all transactions 14

85 The average outcoming amount per day (Normal transactions) 13 86 calldatasize (opcode) 11

87 gt (opcode) 9 88 0xa9059cbb (operands) 8

89 sload (opcode) 8
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Table 10. The Top Features for Multi-class Classification (LightGBM)

No. Features Frequency No. Features Frequency

1 The minimum amount ever received (All transactions) 4,521 2 The minimum amount ever received (Normal transactions) 4,334

3 JUMPDEST CALLVALUE ISZERO PUSH2 (opcode and
operands)

3,783 4 0x73ff (bytecode) 3,597

5 The average amount received for each transaction (Normal
transactions)

3,585 6 The shortest interval between two transactions (Normal
transactions)

2,637

7 The average time between incoming transactions (All
transactions)

2,404 8 0x60 (operands) 2,356

9 The proportion of amount sent by normal transactions out of all
amount transferred

2,297 10 The average time between incoming transactions (Normal
transactions)

2,229

11 The average time between outcoming transactions (Normal
transactions)

2,071 12 Time since the first until the last transaction (Normal
transactions)

2,069

13 The shortest interval between two transactions (All
transactions)

1,993 14 The total number of transactions (Normal transactions) 1,762

15 The longest interval between two transactions (All transactions) 1,744 16 Time since the first until the last transaction (All transactions) 1,716

17 The minimum amount ever sent (Normal transactions) 1,677 18 The average amount received for each transaction (All
transactions)

1,668

19 The longest interval between two transactions (Normal
transactions)

1,656 20 push1 (opcode) 1,648

21 The proportion of amount received by normal transactions out
of all amount transferred

1,648 22 The average incoming amount per day (Normal transactions) 1,352

23 The total amount ever received (Normal transactions) 1,323 24 The total number of transactions (ERC20 transactions) 1,261

25 0x2 (operands) 1,200 26 The total number of transactions (Internal transactions) 1,199

27 dup9 (opcode) 1,179 28 0x3fff (bytecode) 1,178

29 The average incoming amount per day (All transactions) 1,132 30 The minimum amount ever sent (All transactions) 1,120

31 The average amount sent for each transaction (Normal
transactions)

1,043 32 JUMPDEST CALLVALUE DUP1 ISZERO (opcodes and operands) 1,031

33 0x8fc (operands) 1,021 34 calldataload (opcode) 1,012

35 The total amount transferred by outcoming and incoming
transactions (Normal transactions)

986 36 The total amount transferred by outcoming and incoming
transactions (All transactions)

946

37 dup1 (opcode) 939 38 0xfff1 (bytecode) 918

39 0xa0 (operands) 878 40 RETURN JUMPDEST CALLVALUE ISZERO (opcodes and
operands)

856

41 SWAP1 DUP2 MSTORE PUSH1 (opcodes and operands) 795 42 The average time between outcoming transactions (All
transactions)

760

43 sload (opcode) 741 44 0x57fe (bytecode) 707

45 0x40 MLOAD DUP1 DUP3 (opcodes and operands) 697 46 The proportion of unique incoming address out of all incoming
transactions (Normal transactions)

692

47 The minimum amount ever received (ERC20 transactions) 625 48 The total number of incoming transactions (Normal
transactions)

617

49 The total amount ever received (All transactions) 511 50 calldatasize(opcode) 506

51 JUMP JUMPDEST PUSH1 0x0 (opcodes and operands) 419 52 The average time between incoming transactions (ERC20
transactions)

407

53 The shortest interval between two transactions (ERC20
transactions)

390 54 The average number of incoming transactions per day (Normal
transactions)

382

55 The proportion of normal outcoming transactions out of all
transactions

339 56 The average time between outcoming transactions (Internal
transactions)

333

57 The proportion of unique incoming address out of all incoming
transactions (All transactions)

332 58 The average incoming amount per hour (Normal transactions) 323

59 mul (opcode) 295 60 The proportion of internal transactions out of all transactions 239

61 The average number of incoming transactions per hour (Normal
transactions)

200 62 0x5b61 (bytecode) 198

63 The proportion of normal outcoming transactions out of all
normal transactions

193 64 0x627a7a723058 (operands) 189

65 The proportion of normal incoming transactions out of all
transactions

188 66 The average number of incoming transactions per day (All
transactions)

185

67 revert (opcode) 183 68 dup8 (opcode) 182

69 The average amount sent for each transaction (All transactions) 179 70 The total number of transactions (All transactions) 171

71 The longest interval between two transactions (ERC20
transactions)

136 72 The average number of outcoming transactions per day (Normal
transactions)

133

73 The number of unique outcoming addresses (Normal
transactions)

129 74 The average number of outcoming transactions per day (All
transactions)

119

75 The proportion of internal outcoming transactions out of all
transactions

114 76 CALLVALUE DUP1 ISZERO PUSH2 (opcodes and operands) 110

77 The average incoming amount per hour (All transactions) 79 78 The average amount transferred per day (Normal transactions) 70

79 The average number of incoming transactions per hour (All
transactions)

65 80 The average number of transactions per day (Normal
transactions)

65

81 caller (opcode) 64 82 The proportion of ERC20 outcoming transactions out of all
transactions

60

83 The total amount ever sent (Normal transactions) 59 84 The average time between outcoming transactions (ERC20
transactions)

57

85 dup7 (opcode) 57 86 The proportion of internal incoming transactions out of all
transactions

56

87 0xa9059cbb (operands) 55 88 gt (opcode) 55

89 jumpdest (opcode) 54
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Table 11. The Top Features for Binary Classification (LightGBM)

No. Features Frequency No. Features Frequency
1 The minimum amount ever received (All transactions) 1,174 2 The minimum amount ever received (Normal transactions) 860
3 The total number of transactions (Normal transactions) 697 4 The average amount received for each transaction (Normal transactions) 694
5 The average time between outcoming transactions (Normal transactions) 658 6 Time since the first until the last transaction (Normal transactions) 606
7 The minimum amount ever sent (Normal transactions) 576 8 The proportion of amount sent by normal transactions out of all

transactions
568

9 The average time between incoming transactions (Normal transactions) 567 10 The average time between incoming transactions (All transactions) 522
11 The longest interval between two transactions (All transactions) 438 12 Time since the first until the last transaction (All transactions) 427
13 The shortest interval between two transactions (Normal transactions) 401 14 SWAP1 DUP2 MSTORE PUSH1 (opcodes and operands) 395
15 0x73ff (bytecode) 395 16 The shortest interval between two transactions (All transactions) 392
17 The total number of incoming transactions (Normal transactions) 384 18 The total number of transactions (ERC20 transactions) 382
19 The total amount transferred by outcoming and incoming transactions

(Normal transactions)
380 20 The average amount received for each transaction (All transactions) 365

21 The minimum amount ever received (ERC20 transactions) 359 22 The proportion of amount received by normal transactions out of all
amount transferred

348

23 The longest interval between two transactions (Normal transactions) 327 24 The proportion of normal outcoming transactions out of all normal
transactions

308

25 The total amount ever received (Normal transactions) 300 26 The average time between incoming transactions (ERC20 transactions) 300
27 0x2 (operands) 294 28 The total number of transactions (Internal transactions) 288
29 The average time between outcoming transactions (ERC20 transactions) 265 30 The minimum amount ever sent (All transactions) 255
31 swap1 (opcode) 251 32 The average time between outcoming transactions (All transactions) 231
33 The average incoming amount per day (All transactions) 227 34 gt (opcode) 221
35 The total amount transferred by outcoming and incoming transactions

(All transactions)
218 36 The average incoming amount per day (Normal transactions) 209

37 The shortest interval between two transactions (ERC20 transactions) 205 38 The average amount sent for each transaction (Normal transactions) 201
39 The proportion of ERC20 incoming transactions out of all transactions 175 40 The proportion of normal outcoming transactions out of all transactions 162
41 The proportion of all outcoming transactions out of all transactions 158 42 The proportion of internal incoming transactions out of all transactions 157
43 The proportion of normal incoming transactions out of all transcations 147 44 sha3 (opcode) 142
45 The proportion of unique incoming address out of all incoming

transactions (All transactions)
135 46 The proportion of normal incoming transactions out of all normal

transactions
132

47 calldatasize (opcode) 131 48 SJUMPDEST CALLVALUE DUP1 ISZERO (opcodes and operands) 122
49 The total amount ever received (All transactions) 121 50 The average number of incoming transactions per day (Normal

transactions)
116

51 The longest interval between two transactions (ERC20 transactions) 112 52 The average amount received for each transaction (Internal transactions) 107
53 The proportion of amount sent by ERC20 transactions out of all amount

transferred
99 54 The proportion of ERC20 incoming transactions out of all ERC20

transactions
91

55 The average number of incoming transactions per hour (Normal
transactions)

80 56 0xa9059cbb (operands) 78

57 The proportion of unique incoming address out of all incoming
transactions (Normal transactions)

70 58 RETURN JUMPDEST CALLVALUE ISZERO (opcodes and operands) 65

59 The total amount transferred by outcoming and incoming transactions
(ERC20 transactions)

60 60 The average number of incoming transactions per day (All transactions) 59

61 The average number of outcoming transactions per day (Normal
transactions)

57 62 The average amount received for each transaction (ERC20 transactions) 54

63 The average amount transferred per day (Normal transactions) 54 64 0x5b61 (bytecode) 52
65 The average incoming amount per hour (Normal transactions) 50 66 The average incoming amount per hour (All transactions) 48
67 The proportion of ERC20 outcoming transactions out of all transactions 48 68 The average amount sent for each transaction (All transactions) 46
69 The average time between incoming transactions (Internal transactions) 43 70 The minimum amount ever received (Internal transactions) 42
71 The average number of transactions per day (Normal transactions) 41 72 call (opcode) 39
73 The total number of incoming transactions (All transactions) 36 74 The proportion of all incoming transactions out of all transactions 36
75 The total number of transactions (All transactions) 29 76 The minimum amount ever sent (ERC20 transactions) 28
77 The average number of outcoming transactions per day (All transactions) 27 78 The average incoming amount per day (ERC20 transactions) 25
79 Time since the first until the last transaction (ERC20 transactions) 24 80 0x100 (operands) 24
81 The proportion of normal transactions out of all transactions 24 82 The proportion of ERC20 transactions out of all transactions 24
83 The average amount transferred per hour (Normal transactions) 23 84 The average incoming amount per day (Internal transactions) 17
85 The average amount sent for each transaction (ERC20 transactions) 14 86 The average number of outcoming transactions per hour (All

transactions)
14

87 The total number of transactions (ERC721 transactions) 13 88 0x8fc (operands) 13
89 0x3 (operands) 13 90 The average outcoming amount per day (All transactions) 13
91 The average number of incoming transactions per hour (All transactions) 13 92 The proportion of ERC20 outcoming transactions out of all ERC20

transactions
12

93 The proportion of ERC20 outcoming transactions out of all outcoming
transactions

12 94 returndatasize (opcode) 12

95 The proportion of normal incoming transactions out of all transactions 12 96 The proportion of amount sent by ERC20 transactions out of all sent
amount

12

97 The average outcoming amount per day (Normal transactions) 12 98 The average number of outcoming transactions per hour (ERC20
transactions)

12

99 lt (opcode) 11 100 The total number of incoming transactions (ERC20 transactions) 11
101 The average amount transferred per day (All transactions) 11 102 The average number of outcoming transactions per day (ERC20

transactions)
11
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