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Abstract—The insecurities of public-key infrastructure on the
Internet have been the focus of research for over a decade. The
extensive presence of broken, weak, and vulnerable cryptographic
keys has been repeatedly emphasized by many studies. Analyzing
the security implications of cryptographic keys’ vulnerabilities,
several studies noted the presence of public key reuse. While
the phenomenon of private key sharing was extensively studied,
the prevalence of public key sharing on the Internet remains
largely unknown. In this work, we perform a large-scale analysis
of public key reuse within the PKI ecosystem. We investigate
the presence and distribution of duplicate X.509 certificates and
reused RSA public keys across a large collection containing
over 314 million certificates and over 13 million SSH keys
collected by different sources at different times. We analyze the
cryptographic weaknesses of duplicate certificates and reused
keys and investigate the reasons and sources of reuse. Our results
reveal that certificate and key sharing are common and persistent.
Our findings show over 10 million certificates and 17 million
public keys are reused across time and shared between our
collections. We observe keys with non-compliant cryptographic
elements stay available for an extended period of time.

Index Terms—Communication Protocols, Peer-to-Peer Net-
works, Security Management, Security Services, Data Mining
and (Big) Data Analysis.

I. INTRODUCTION

IN 2021, Github revoked RSA keys, generated by the
vulnerable GitKraken client’s library that created duplicate

SSH authentication keys [1]. In 2018, Infineon released a secu-
rity patch to update the vulnerable Trusted Platform Module
in its microcontrollers responsible for generating vulnerable
RSA keys [2].

The sad state of public-key infrastructure on the Internet has
been the focus of security research for over a decade. In 2011
Holz et al. [3] investigating the deployed X.509 certificates for
TLS/SSL certification pointed out that infrastructure is broken,
i.e., only one out of five certificates can be counted as valid,
and many include cryptographically weak keys.

The presence of broken, weak, and vulnerable cryptographic
keys on the Internet has been extensively investigated by a
number of studies from different points of view. Some studies
traced back the problem to weak random number generators
and the lack of entropy [4]–[6], while others claimed a simple
misuse of keys [7], and the improper implementation of
cryptographic libraries as the main reasons [8]–[11].

Network appliances and services rely on certificates and
keys to facilitate secure communication, code signing, au-
thentication, and other security-related functionality. However,
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mishandling or misuse of certificates or keys poses a signifi-
cant threat to the overall security of the PKI ecosystem.

Weaknesses in RSA keys allow for faster factorization, i.e.,
one can efficiently compute the corresponding private keys
undermining the security of communication [4], [12]. When
keys are reused across different devices and organizations, it
exposes the corresponding private key, which can be exploited
by attackers. This enables attackers to utilize certificates from
benign sources to sign malicious software or impersonate
legitimate companies. Consequently, an attacker who gains
access to the private key or is able to regenerate it (e.g., in
case of vulnerable and weak public keys) can access encrypted
content and/or intercept secured network traffic.

Misuse of cryptographic algorithms and a combination of
implementation decisions made in software libraries can lead
to distinguishable patterns and consequently can be leveraged
in identifying a probable origin of a key, e.g., an originating
library, its specific version, and operating system [2], [10],
[13], [14].

Investigating the reuse of public keys is crucial for under-
standing high-risk practices within legitimate procedures and
for identifying compromised use cases. This phenomenon was
initially observed by Heninger et al. [4] in a small study of 6.2
million SSH keys and 5.8 million TLS certificates, and later
confirmed by Cangialosi [15]. Although the phenomenon of
private key sharing with web hosting providers was extensively
explored by Cangialosi et al. [15] and Liu et al. [16], the
prevalence of public key reuse across domains remains largely
unknown. This includes its occurrence in various applications
such as TLS/SSL certificates for web environments, SSH keys
for authentication means, and code-signing certificates for
ensuring software integrity.

In this study, 1 we conduct the most comprehensive
and the largest Internet-wide scan and analysis of TLS/SSL
certificates and RSA keys across domains. 2 We measure
and characterize the extent of TLS/SSL certificates and RSA
public key sharing across domains on a diverse set of over 314
million valid certificates and 13 million SSH keys collected
from multiple sources. These datasets represent snapshots of
the certificates and keys used over time. 3 We develop and
publicly offer a key analysis platform KeyExplorer that can
examine the weaknesses of certificates and keys.

This study represents the most extensive measurement anal-
ysis of public RSA key reuse on the Internet to date. Our
collection comprises 84 million unique RSA keys, which is 15
times greater than the set used previously in a seminal study
conducted by Heninger et al. [4]. We conduct the lifespan
analysis of the use of certificates over time and determine the
reused certificates and keys across different devices, organiza-
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tions, and domains. Our analysis shows that 6.5% (10,110,361)
TLS certificates are shared across our collection. We find
a considerable amount of shared certificates that are used
to sign malware while still being served in communication
by different hosts. We observe that 28% of certificates used
in malicious binaries are also used by Android apps. This
emphasizes the existing reuse of keys for different purposes
and across domains.

We investigate the cryptographic characteristics of these
reused certificates. Through our analysis, we uncover a mul-
titude of security issues. These problems include an alarming
number of weak and factorable keys, keys susceptible to the
ROCA attack [2], and the use of deprecated and non-compliant
signature algorithms. To delve deeper into the underlying
causes of these vulnerabilities, we scan IPv4 addresses that
serve the reused TLS certificates. Our findings indicate that the
majority of reused certificates are associated with embedded
network devices running operating systems derived from Linux
and BSD distributions. These certificates are primarily utilized
by devices manufactured by a small number of companies
and have been in active use for an extensive period. For
instance, we observed that 48,794 IP addresses, identified as
routers, have been serving 950 distinct certificates for over
two decades. Alongside duplicate certificates, we discover
14,862,767 identical RSA public keys that appear in multiple
distinct TLS certificates, 44% of these shared keys can be
considered weak.

In the final phase of our study, we trace the reused keys
found in distinct certificates back to their origins. The in-
vestigation reveals that these keys are primarily generated by
only a couple of versions of OpenSSL and GnuTLS libraries
associated with a history of issues related to random number
generation implementation.

Our findings emphasize the need for robust mecha-
nisms for the detection and analysis of duplicate and weak
certificates and keys. To facilitate this analysis, we im-
plemented a correlation platform to determine duplicate
keys and detect TLS certificates and RSA keys’ weak-
nesses. We make the resulting duplicate keys publicly avail-
able: https://github.com/thecyberlab/RSA-keys-analysis. Fur-
thermore, we develop a publicly open platform to examine
the discussed weaknesses of certificates and keys: https://key-
explorer.com/.

This paper is organized as follows: We briefly outline the
characteristics of TLS/SSL and SSH protocols in Section II.
Section III gives an overview of related work. Next, we
explained the data collection in Section IV. Further, we explain
our proposed approach in Section V. Section VI discusses
our initial analysis. In Sections VII and VIII, we outlined
our findings related to shared certificates and keys. Finally,
we summarize the major findings and discuss their implica-
tions and recommendations in Section IX. We conclude in
Section XI.

II. BACKGROUND

The presence of vulnerable and weak cryptographic ele-
ments has a number of critical security implications. If a cer-
tificate or the corresponding cryptographic key is vulnerable,
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Fig. 1: X.509 certificate layout.

the encrypted content and/or secured network traffic can be
accessible by an insider attacker (or an external attacker with
access to a compromised machine inside the network) who
has access to the private key or is be able to regenerate it. In
spite of the strong mathematical foundations of cryptographic
algorithms, several studies highlighted weaknesses in practical
implementations of cryptographic protocols which rarely relate
to the fundamental aspects of the algorithm’s theoretic design.

This study focuses on the analysis and measurement of
the presence and distribution of cryptographic materials in
different sources and hosting environments and to this end,
we first need to take a look at some general terms.

a) TLS/SSL: The Transport Layer Security (TLS) [17]
and its predecessor the Secure Sockets Layer (SSL) are the
cryptographic protocols that provide point-to-point encryption
service to a number of application layer protocols such as
HTTPS, DNS, SMTPS, IMAPS, etc. A TLS/SSL connection
is initiated with a TLS handshake when a client requests a
secure connection. At this stage, a server presents its digital
certificate that allows the client to authenticate it. The client
can also respond with its certificate. Once both parties agree
on the encryption algorithm, further communication happens
within the encrypted channel.

b) SSH: The SSH protocol [18] is a cryptographic
communication protocol that ensures secure remote access and
network services over potentially insecure networks. The SSH
host runs an SSH server, which listens for incoming SSH
connection requests from clients. During the initial phase,
a client and a server exchange the supported cryptographic
algorithms available to both parties, the server then sends its
public key to the client to authenticate its identity.

c) Digital certificates: Digital certificates serve as an at-
testation of the identity of a certificate’s owner (e.g., hostname,
organization) bound to its public key. The X.509 format [19]
is one of the most widely used standards for digital certificates
that, in addition to the public key and owner’s identity, contains
a period during which the certificate is considered valid, and a
digital signature of the issuing certification authority (CA). CA
is a trusted third party whose primary function is to validate
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the identity of individuals, organizations, or servers requesting
digital certificates and to vouch for their authenticity. By
signing the leaf certificate (end-entity certificate) with its
private key, the CA provides assurance that the certificate’s
owner is genuine and that the public key contained within the
certificate belongs to that owner. To verify this leaf certificate,
a client needs to obtain a chain of certificates including a
presented leaf certificate, intermediate certificates, and finally,
a root certificate. In a web’s PKI, when a server presents a
leaf certificate, it is expected to include the certificate chain
as well. A client then can verify each certificate along the
chain using the included CAs’ digital signatures. In general,
the public key contained in certificates can be used for a
specific purpose. The purpose is listed in the ”Key Usage” and
”Extended Key Usage” extensions field in a certificate such
as digital signature, key encipherment, data encipherment,
key agreement, TLS web server authentication, TLS web
client authentication, code signing, email protection, etc. The
structure of an X.509 certificate is given in Figure 1. In
addition to the certificate layout, it also shows a fingerprint,
which is a computed hash of a certificate in binary format.
Typically, leaf TLS certificates are compared by matching
these fingerprints [20].

d) RSA: In this work, we focus on the RSA keys [21] as
this is arguably the most popular cryptographic system utilized
on the Internet today. RSA is an asymmetric cryptographic
algorithm that leverages the fact that while the multiplication
of large prime numbers may not be computationally intensive,
the factorization of large prime numbers is significantly more
complex. An RSA public key is a pair of values (n, e). It
is generated based on two prime numbers p and q used to
calculate the modulus n, i.e., n = p ∗ q. The public key’s
exponent e is selected at random, so that e ∈ 1, 2, ..., φ(n)−
1 and the GCD(e, φ(n)) is equal to 1 so that e and n are
relatively prime. As a result, an RSA public key Pubk = (e, n)
is represented by an exponent e and a modulus n. RSA public
key size is measured by the length of the key’s modulus in
bits [22].

e) PKI: Public Key Infrastructure, is a system that man-
ages digital certificates and cryptographic keys. It establishes
trust by binding an entity’s identity to its public key. PKI en-
ables secure communication and authentication over networks
like the Internet. It relies on a trusted Certification Authority
(CA) to issue and verify digital certificates.

III. RELATED WORK

There is a significant body of research on TLS/SSL secu-
rity. Over the years, studies showed weaknesses in TLS/SSL
deployments for email [23], consumer IoT devices [24], and
industrial IoT devices [25]. Paracha et al. [24] tested 40 TLS-
supporting IoT devices across several categories. The study
revealed that several of these devices show similarities in TLS
fingerprints with other devices from the same manufacturer
(e.g., Amazon devices) as well as with other TLS clients
(e.g., LG TV). Among other problems, they noted a lack of
certificate validation and the use of deprecated certificates.

In 2022, Dahlmanns et al. [25] examined the TLS adoption
rate in industrial IoT devices. Their study showed that among

967,551 IoT devices, only 6.5% have implemented the TLS
protocol, with 42% of these being configured insecurely. This
insecurity arises from various factors such as the reuse of
compromised secrets of certificates (30%), certificates relying
on deprecated primitives (e.g., recently issued certificates rely-
ing on MD5), outdated protocol versions, ciphers, or disabled
access control. These findings demonstrate that the progression
of industrial protocols toward secure end-to-end communica-
tion is not extensively mirrored in real-world deployments.

Several studies examined the weaknesses of TLS certifi-
cates. In 2016, Chung et al. [26] showed that on average,
65% of SSL certificates advertised in each IPv4 scan are
invalid. Using a set of over 80 million certificates, they found
that most invalid certificates originated from a few types of
end-user devices associated with a few Autonomous Systems.
A concurrent study by Samarasinghe et al. [27], albeit on
a smaller scale, analyzed certificates obtained from 299,858
devices. Similar to others, the researchers found a presence
of small keys (4% were 512-bit and 768-bit keys) and a
use of deprecated RC4 stream cipher (37%). In 2021, Hue
et al. [28] evaluated the strength of TLS connections on
3,637 domains in a WPA2-Enterprise ecosystem. The study
showed a widespread presence of security issues such as weak
algorithms, use of expired certificates, use of short RSA keys,
and possible key reuse.

The compromise of cryptographic protocols happens due
to errors in protocol implementation, misconfiguration, or
improper selection of parameters. In 2012, Heninger et al. [4]
studied the presence of vulnerable keys across the Internet
by analyzing 6.2 million SSH keys and 5.8 million TLS
certificates collected in the wild. Their results showed at least
5.57% of TLS hosts and 9.6% of SSH hosts used vulnerable
duplicate keys. Similar results were obtained by Lenstra et
al. [29] on the analysis of 11.7 million public RSA keys. The
later study performed by Gasser et al. [12] on 56.4 million
SSH keys confirmed that the amount of vulnerable keys is
declining. While Heninger et al. [4] were able to factor keys
for 0.03% of SSH hosts, Gasser et al. [12] found that 0.013%-
0.016% SSH hosts use factorable keys.

Several studies showed that key reuse can lead to cross-
version [30] and cross-protocol attacks. Felsch et al. [31]
showed that a single RSA key pair used to configure dif-
ferent versions of the Internet Key Exchange (IKE) protocol
in Clavister and ZyXEL devices can lead to cross-protocol
authentication bypasses.

Specifically looking at the reused TLS certificates, Costin
et al. [6] analyzed firmware images and was able to identify
approximately 35,000 active online devices on the Internet that
were utilizing the same self-signed certificates. The use of
certificates in digitally signed malware has been studied by
[32], [33]. To evade anti-virus programs and bypass system
protection mechanisms malware is often signed with valid
certificates. Kim et al. [32] found that 88.8% of the signed
malware families rely on a single certificate. Kang et al. [34]
introduced AndroTracker, a tool that makes use of serial
numbers of certificates to detect possible Android malware.

Vulnerabilities in PKI infrastructure undermine the security
of the entire ecosystem. To enhance PKI security, various
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solutions have been introduced, primarily targeting the core
assumption of PKI: the necessity of a trusted CA. Certificate
Transparency [35] and Sovereign Keys [36] were introduced
in an effort to provide more accountability and make com-
promises visible. In a sense, both present an after-the-fact
solution since they cannot guarantee that a CA issued a correct
certificate. Kim et al. [37] developed an Accountable Key
Infrastructure that distributes trust among multiple CAs to
prevent impersonation of domains by a compromised CA.
Larisch et al. [38] introduced the CRLite system for effective
and complete dissemination of TLS certificate revocations for
web browsers. A more comprehensive solution titled Attack-
Resilient Public Key Infrastructure (ARPKI) was proposed by
Basin et al. [39]. It is similarly based on multiple CAs to allow
even a single truthful entity to prevent attacks. These schemes
seek to reduce trust in certification authorities by introducing
public logs, multiple CAs, and other alternative solutions. For
example, LocalPKI proposed by Dumas et al. [40] enables a
local deployment of PKI that allows local authorities to issue
certificates.

Several studies showed vulnerabilities of cryptographic keys
in both protocols and files are due to improper use of libraries
or inherited from their weaknesses, for example, random
number generators (RNGs). Heninger et al. [4] confirmed
that limited sources for generating appropriate randomness
in memory-constrained devices (such as routers, and smart
cards). In 2008, a bug in the OpenSSL library made predictable
generated random numbers. A follow-up by Yilek et al. [41]
confirmed the spread of keys affected by the bug even after
six months of disclosure. Slow industry response to the cryp-
tographic bugs was also noted by Hastings et al. [42] which
suggests that one of the main causes behind the majority of
factored RSA keys may be related to RNG issues.

The various weaknesses in cryptographic keys were later
used to attribute keys to the corresponding libraries that
generated them. Svenda et al. [10] performed the technical
analysis of over 60 million newly generated keys from 22 open
and closed-source libraries and from 16 distinct smart card
vendors, revealing that various security lapses allow attributing
keys to the libraries that generated them based solely on the
properties of RSA public keys. Branca et al. [14] took a step
further showing that it is feasible to accurately (with 95%
accuracy) attribute RSA keys to individual library versions.

We similarly examine the weaknesses present in RSA public
keys. However, unlike previous research that concentrates on
a specific area of RSA key usage, our study investigates the
prevalence of shared certificates and key usage across diverse
domains on a much larger scale. Our analysis of over 314
million certificates and 13 million SSH keys collected over a
period of several years gives a more comprehensive view of
key usage on the Internet.

IV. COLLECTED DATA

For our measurement study, we collected digital certificates
and RSA keys from 6 different sources covering a period of
several years. The details of the collected data are given in
Table I.

1) TLS/SSL certificates: To collect certificates, we gener-
ated 100 million IP addresses using the IP ranges assigned
to the corresponding registrars around the world. We scanned
them and selected IPs that appeared alive and responded to
our scan. Out of the IPs that responded, we randomly selected
10 million IP addresses, ensuring that at least 1 IP was repre-
senting each network segment. This ensured a representation
of hosts around the world. The 10 million were selected
as a 10% representation sample. These IP addresses were
contacted on ports 21 (FTP), 443 (HTTPS), 465 (SMTPS),
993 (IMAPS), and 995 (POP3) to determine the listening
hosts. If a host replied, acknowledging our connection (syn-ack
packet), we further connected to it using TLS/SSL protocol to
obtain a certificate. We made several scans in 2013 collecting
certificates using SSL2, SSL3, and SSL231, TLS 1, TLS
1.1 protocols. For each successful connection of TLS/SSL,
we collected a leaf certificate and discarded the chain of
certificates. Our scans conducted between December 2021 and
February 2022 reaffirmed the continued presence of 94% of
all certificates within this set.

2) SSH Keys: To collect SSH keys, we scanned the public
IPv4 space during May-September, 2021. We used ZMap [43]
to perform a single-packet host discovery. For each host
discovered by ZMap, we contacted it again on ports 22, 23,
2222, 4444, 5000, and 10001 using the ssh-keyscan tool [44]
collecting SSH banner and their public SSH RSA key. In
addition to the cryptographic material from RSA keys, we
recorded key collection time, an IP address, and a port. Using
ssh-keyscan we collected both the public key and server header
from the connection.

3) Rapid7 certificates: We obtained an additional collec-
tion of SSL certificates from Rapid7 [45]. We used weekly
scans collected by Rapid7 from October 2013 to September
2015, August 2019, and during a period of September 2020
to July 2021. In addition to X.509 certificates, this retrieved
set contains a collection of metadata, e.g., time of collection,
IP address, protocol and port, and the X.509 certificate’s fin-
gerprint. Similar to other sets, we only kept the leaf certificate
and discarded the chain of certificates to ensure consistency in
analysis. The certificates from 2013-2015 were retrieved from
Rapid7 in the past without the corresponding IP addresses.
Note, that this set is no longer available from the Rapid7 set
in its entirety.

4) SBA certificates: In our analysis, we also used the subset
of certificates offered for analysis by Mayer et al. [46]. The
email ecosystem makes wide use of certificates for the secure
transmission of messages. The SBA set contains the certifi-
cates retrieved over StartTLS protocol from SMTP servers on
port 25 during a period of April 2015 - August 20152.

5) Malware certificates: We complemented our data with
a set of 40,270,387 malicious files in PE (Microsoft Windows
Portable Executable) format retrieved from VX underground’s

1The OpenSSL header file dealing with the combined use of the SSLv2
and SSLv3 protocols.

2The original set is now only available through Wayback machine:
https://web.archive.org/web/20160307162719/https://scans.io/study/sba-email.
Due to a site problem, we were never able to download the whole set.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2024.3495617

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON NETWORKING 5

TABLE I: The summary of collected certificates and keys

Datasets Collection period Responsive hosts/
collected files

Collected certifi-
cates and keys

All valid certificates Valid RSA certificates
& keys

Unique RSA keys

Collected
TLS/SSL

8/2013-11/2013 1,675,040 IPs 863,872 certs 863,871 (100%) 863,500 certs 863,500 (100%)

Collected SSH 5/2021-9/2021 10,435,118 IPs 13,681,145 keys n/a 13,681,145 keys 9,747,793 (71.25%)

Rapid7 10/2013-09/2015, 8/2019,
9/2020-7/2021 99,910,085 IPs 295,063,780 certs 234,865,702 (79.6%) 135,823,576 certs 104,904,586

(77.24%)
Malware 2012-2021 40,270,387 files 18,081,501 certs 18,081,501 (100%) 18,081,489 certs 41,282 (0.23%)
Android apks 9/2020-10/2020 72,508 apks 118,743 certs 29,247 (24.63%) 29,247 certs 29,247 (100%)
SBA 4/2015 - 9/2015 n/a 202,381 certs 202,381 (100%) 202,378 certs 121,990 (60.28%)
Total - - 314,330,277 certs

13,681,145 keys
254,042,702 (77.45%) 168,681,335 keys

155,000,190 certs
115,708,398∗

(68.60%)
’*’ not deduplicated across sets

x.509 certificates
SSH keys
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Fig. 2: The flow of the analysis.

APT collection [47] and VirusShare repository [48] from 2012
to 2021.

6) Collected APKs certificates: For our analysis, we
crawled several legitimate Android markets (GooglePlay, Mo-
bile1, Slideme, Xiaomi, Nduo.cn, Mob.org, Anzhi, Fdroid, and
ApkGalaxy) to collect 80,000 apk files. Out of the collected
apks, 79,652 of them were successfully decompressed and
72,508 apks had at least one cryptographic key.

V. METHODOLOGY

a) Challenges: There are many advantages to performing
large-scale analysis of RSA certificates and key reuse. In fact,
some trends and patterns can only be revealed by looking
at the global picture, which individual organizations and
CAs may not have. However, large-scale analysis requires
an automated approach to obtain certificates and keys, parse
them, and analyze them for reuse. While these tasks may
appear easy, in reality, there are several challenges that need
to be solved.

Challenge 1: Modern cryptographic libraries do not fully
support legacy certificates. The evolution of cryptographic
standards has resulted in stricter requirements for modern
certificates. Consequently, certificates with weaker elements,
such as an exponent = 13, are no longer produced by libraries,
and therefore no longer expected to be parsed [49]. Since
legacy certificates are still widely used in practice, valid
certificates are accepted by libraries, but only fields necessary
for authentication - such as the signature - are verified. This
is not sufficient for a large-scale analysis of key reuse. Since
modern libraries often fail to parse all individual fields for
such certificates, this task requires custom parsing of legacy
certificates.

3https://github.com/golang/go/blob/master/src/crypto/rsa/rsa.go, line 99
shows harded values of an acceptable key exponent.

Challenge 2: Inconsistent Object Identifiers (OIDs). OIDs
are numeric values that uniquely represent various entities and
attributes. For example, RFC 5280 [19] and RFC8017 [50]
require OID to point to the corresponding encryption and
signature algorithms in x.509 certificates. Microsoft uses OIDs
to represent certificate extensions [51]. This representation,
however, is not consistently implemented across libraries (e.g.,
OpenSSL does not contain Microsoft OIDs by default [52])
and varies between operating system versions. In many cases,
the only source of reliable information is the official vendor
documentation. While this is not a problem when manually
mapping a handful of OIDs, extending the analysis to millions
of certificates is challenging and error-prone.
Challenge 3: Longitudinal analysis of certificates. The goal of
our study is not only to analyze the reuse of certificates and
keys over time but also to provide insight into the devices
and applications associated with these shared certificates.
However, this presents several challenges. Some datasets lack
corresponding IP addresses, and even when IP addresses are
present, we cannot rely on them due to their dynamic nature.
There is no guarantee that the IP addresses that previously
served these certificates are still active, whether they are
assigned to the same devices, or if the same applications using
these certificates are running on the same ports. Confirming
this information is a tedious task that requires rescanning
devices and verifying certificate fingerprints. However, this
step does not provide information on the corresponding device,
operating system, or library that generated a certificate and key.
While we used some of the existing techniques, our analysis
proved to be significantly more time-consuming than typically
acknowledged for this task. We believe that the development of
new techniques is required to accurately address this problem
at a large scale.
Challenge 4: Scalability and computational requirements. One
of the main advantages of performing a large-scale analysis
is the ability of correlating information across different cer-
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tificates and keys from various sources. However, capturing
interesting insights requires a pairwise comparison of all
certificates and keys. For example, in parsed format, our
collected data exceeded 4 terabytes. Querying this extensive
dataset presents significant computational challenges.

b) Analysis: The conceptual flow of the analysis is
illustrated in Figure 2. It includes three main steps.

Parsing At this step, we initially relied on standard li-
braries. The Android apps were unpacked and analyzed for
the presence of cryptographic keys. We used apktool to extract
APK files content, and CERT Keyfinder utility4 to locate
and parse key files contained within Android APK files.
CERT Keyfinder collects all references to files with standard
extensions associated with cryptographic certificates and keys,
such as rsa, pem, crt, and cer. We extracted and parsed all
certificate files using Keyfinder. Only the keys successfully
extracted by Keyfinder were retained for our analysis, ensuring
that only correct (non-false positive) certificates and keys were
included. Similarly to TLS/SSL certificates, we only kept the
leaf certificate in the chain of certificates. These certificate files
are intended to be used for signing apk files, i.e., to identify
the author of an Android app. We were primarily interested in
keys used for code signing, hence, we did not decompile .dex
files to extract hard-coded keys or other not-signing certificates
in our analysis.

Malware binaries were parsed using GoLang’s sigtool [53],
which is a PE package designed to extract signing information
from PE files, and we only kept the leaf certificate for our
analysis. The certificate signing the code is contained in the
”Attribute certificate” section of PE files in DER format. The
extracted certificates were converted to the PEM format, which
was then parsed to extract the certificate and key information.
Similarly, the keys that were extracted and parsed successfully
by sigtool were included in our analysis ensuring only true
positives were used.

The collected certificates were parsed using Python cryp-
tographic libraries: PyOpenSSL, Cryptography, Pyasn1, and
Paramiko. These libraries provide the necessary functionality
to parse modern certificates in PEM or DER format and extract
the corresponding certificate metadata and the public key. All
legacy certificates that the modern libraries were not able
to process, were handled separately by our custom parsers
developed for this study.

While parsing data from our sets, we found that a significant
number of IP addresses presented invalid (e.g., containing
garbage values, partial keys) or incomplete (i.e., missing criti-
cal fields) certificates. We discarded all invalid and incomplete
certificates and keys. We further filtered non-RSA keys. In
this work, we focus on RSA certificates and keys due to their
predominance presence in PKI infrastructure. For our analysis,
we retained RSA public keys, i.e., their modulus and exponent,
the information extracted from their corresponding certificates,
and the IP addresses (when available).

Reuse detection To explore potential certificate and key
reuse within our collections, we performed a pairwise com-

4https://github.com/CERTCC/keyfinder

parison of RSA certificates based on their fingerprints (also
referred to as thumbprints), i.e., the SHA1 hash of the certifi-
cate in DER binary format. In addition to matching certificates,
we performed a pairwise comparison of valid RSA keys from
all sets irrespective of whether their corresponding certificates
are shared or not. In this analysis, shared certificates and keys
within each set were removed.

Given the time gap between data collection and analysis,
as a final step, we validated shared certificates. For shared
certificates, we retrieved available IP addresses. Since the
Rapid7 scans from 2013-2015 had no associated IP address
or port information, further analysis of the certificates was
performed based on the IP information for the matching
certificates retrieved from the other sets. To match an IP
address/port to the corresponding certificate, we initiated a
TLS/SSL connection with the IP addresses of the shared
certificates during December 2021 and February 2022 and
requested their current certificate.

Retrieving contextual IP information For each of the
IP addresses that share certificates, we scanned IP addresses
using the nmap application. We also performed a simultaneous
DNS query to retrieve the corresponding PTR records, which
provided us with a domain name associated with an IP
address. We also mapped an IP to ASN and retrieved WHOIS
contacts using the Team Cymru service5. Through this process,
we verified the shared certificates and cross-referenced their
fingerprints with those stored in our records. To explore the
origin of the shared RSA keys, we have adopted an approach
for an RSA key origin attribution proposed by Branca et
al. [14].

As the final step of the analysis, we focused exclusively
on the shared certificates and the shared RSA public keys.
Our correlation analysis was performed on the environment
equipped with 64GB of RAM and HighPoint 4-Port M.2
Rocket 1204 PCIe Gen3 NVMe HBA card with 4x2TB
NVMEs. This setup allowed us 1500 MB/s in read and write
operations which is significantly faster than with a traditional
SSD or an NVME along.

VI. INITIAL ANALYSIS

The results of our initial analysis are presented in Table I.
Out of 314 million certificates, we extracted 155,000,190 valid
certificates containing RSA keys. Overall, we were left with
168,681,335 valid RSA keys for our analysis.

We observed that there is a significant amount of duplication
across certificates and keys used on the Internet. The highest
amount of duplication is present in our Malware collection
where almost all keys (99%) found in binaries were also seen
in other sets. Around 29% of keys served by SSH hosts and
43% of Rapid7 certificates are duplicates.

Some aspects of the key and certificate reuse phenomenon
were noted by previous studies. For example, Heninger et
al’s [4] study conducted in 2011-2012 on a smaller scale (12.8
million TLS hosts and 10.2 million SSH hosts) showed that
61% of TLS hosts and 65% of SSH hosts serve the same
key as other hosts. It appears that the usage of repeated keys

5https://team-cymru.com/community-services/ip-asn-mapping/
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TABLE II: RSA public key size

Key size
range (bits)

Frequency
Total Total Unique TLS/SSL SSH Rapid7 Malware Android apks SBA

0-1023 4,203,348 (2.49%) 582,823 (0.69%) 9,539 (1.12%) 0 (0.00%) 581,173 (0.78%) 1,126 (3.05%) 10 (0.03%) 240 (0.20%)
1024-2047 47,050,256 (27.89%) 26,223,521 (30.98%) 385,044 (45.30%) 225,357 (2.31%) 25,958,127

(34.65%)
10,554 (28.61%) 9,544

(32.68%)
26,356
(21.69%)

2048-4095 111,732,314 (66.24%) 55,309,352 (65.33%) 444,259 (52.26%) 9,468,431
(97.13%)

45,892,172
(61.26%)

24,405 (66.15%) 18,767
(64.25%)

89,481
(73.64%)

4096-8191 5,684,453 (3.37%) 2,536,655 (3.00%) 11,111 (1.31%) 53,539 (0.55%) 2,480,086
(3.31%)

802 (2.17%) 885 (3.03%) 5,395 (4.44%)

8192-up 10,964 (0.01%) 6,603 (0.01%) 64 (0.01%) 466 (0.005%) 6,122 (0.01%) 8 (0.02%) 2 (0.01%) 38 (0.03%)
Total 168,681,335 84,658,954 (50.19%) 850,017 9,747,793 74,917,680 36,895 29,208 121,510

has decreased since that time, yet remains a considerable
issue. To understand the current state of the PKI ecosystem,
we investigate the strength of collected keys and certificates
individually.

A. Weak key size

We analyzed the strength of the collected RSA keys based
on their modulus length. Table II shows the wide presence of
weak keys across collections.

Among the collected keys, 30% (51,253,604) of keys are
less than 2048 bits in length. They are considered cryptograph-
ically weak, and should not be used for cryptographic protec-
tions. Since 2015, NIST-compliant RSA keys are required to
have a length greater or equal to 2048 bits [54]–[56]. However,
our observations reveal that even after 2015 approximately
3 million keys with inadequate key sizes persisted. This is
alongside the keys generated prior to 2015, which are still
considered valid due to their extended validity period.

NIST also recommended deprecating signing certificates
that contained RSA keys of 1024 bits by the end of 2013.
However, across all our scans, 2.49% of keys are less than
1024 bits in length and thus have deprecated status. While
most of these keys are found in the TLS/SSL set collected in
2013 and the Rapid7 set partially covering 2013, 15,249 keys
come from sets collected in 2019-2021 indicating that these
legacy keys are still in use.

Among these weak keys, 445,900 (0.26%) are 512-bit RSA
keys. Only a portion of these keys (119,612) in our sets is
associated with an IP address, so we can see that 119,612
TLS hosts serve these vulnerable RSA keys. As a comparison,
in 2012 Heninger et al. [4] showed that 123,038 TLS hosts
were using 512-bit keys, which reveals that the numbers
have not decreased over time. Since we do not have the
corresponding host information for 326,288 keys, it is likely
that the actual number of TLS hosts using 512-bit keys is
significantly underestimated.

B. Breakable RSA keys

Besides keys’ modulus weaknesses, we explore other vul-
nerabilities that lead to key factorization. The summary of
these experiments is given in Table III.

1) Weak exponent: Out of all collected keys, 28 RSA keys
have an exponent equal to one, and 42 keys have an even
exponent. The exponent is supposed to be a large coprime
number, preferably equal to 65537 as recommended by NIST.
In the cases when e = 1, deriving a private key is trivial,

hence, the corresponding public key is considered weak. When
an even exponent is used, by calculating the square root of
the ciphertext, it is potentially possible to retrieve the original
plaintext without possessing the private key.

2) ROCA: We have also tested collected keys for the Re-
turn of Coppersmith’s Attack (ROCA), a security vulnerability
that affects the cryptographic keys generated by a specific type
of hardware RNG called Infineon RSA library [2]. The cryp-
tographic key originated from the Infineon RSA library allows
an attacker to exploit the weak prime numbers generated by
the faulty implementation using Coppersmith’s algorithm. To
test the gathered keys for this vulnerability, we have used the
ROCA detection tool6. Results show that 231 keys in our all
collected data were vulnerable to ROCA.

3) GCD-Factorable: One of the threats to the RSA cryp-
tosystem is the possibility of factorizing modulus to decom-
pose it to p and q values, and consequently to compute the
private key. Theoretically, such factorization is computation-
ally intensive and should be unfeasible for sufficiently large p
and q numbers. Yet in practice, the occurrence of weak keys is
more common which makes the factorization possible in some
cases. Studies by Heninger et al. [4] and Gasser et al. [12]
measured the spread of weak factorable keys in 2012 and 2014.
To determine the presence of weak factorable keys, we used
the Fastgcd7 tool, which was originally developed by Heninger
et al. [4]. The tool performs a pairwise computation of GCDs
of all moduli to determine if any of them share a prime number
with any other modulus, in which case, a computation of the
corresponding private key is straightforward. In our study, the
GCD’s computation was performed on 141,098,520 unique
moduli extracted from the collected certificates and keys. We
were able to find divisors for 185,731 (0.13%) moduli that
were present in 793,694 keys in our sets, i.e., we could factor
the moduli corresponding to 793,694 keys (Table III). This
is considerably higher (80 times) than the numbers reported
by the previous studies, e.g., Heninger et al. [4] reported
finding divisors for 2,314 out of 11,170,883 moduli. Since
our coverage is significantly larger than the previous studies,
we believe our results are more representative of the security
state of the RSA keys.

C. Use of certificates over time
The presence of legacy devices with legacy certificates on

the Internet can partially provide an explanation of key weak-
nesses. We therefore also analyzed the lifetime of our collected

6https://github.com/crocs-muni/roca
7https://factorable.net/resources.html
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TABLE III: Factorable RSA keys

Heninger et al. [4]
SSH hosts using factorable RSA keys 0.03%
TLS hosts using factorable RSA keys 0.5%
Gasser et al. [12]
SSH hosts using factorable RSA keys 0.013%-0.016%

Our results:
Factorization analysis:
GCD factorable moduli 185,731 (0.13%)
Total impacted RSA keys 793,694 (0.47%)
Total impacted certificates 792,246 (0.31%)
Total impacted hosts 35,700
Key dataset:

TLS/SSL 3,923
SSH 1,448
Rapid7 786,293
Malware 2,030
Android apks 0
SBA 0

Key size
0-1023 14,279
1024-2047 769,986
2048-4095 9,327
4096-8191 98
8192-up 4

ROCA vulnerability (keys) 231
Exponent = 1 28
Exponent = even number 42

certificates. To explore the use of certificates across time, we
grouped all certificates based on the time of their collection.
Within each time interval, we discarded duplicates based on
their fingerprints and checked the presence of the remaining
unique certificates in other time intervals. Figure 3 shows the
frequency of distinct certificates seen across different time
ranges.

The certificates appearing in earlier time ranges (2013-2015)
are rarely seen at later times. This is generally expected as
some of the older certificates will become obsolete due to
evolving cryptographic standards and would require organiza-
tions to generate new keys and the corresponding certificates
to comply with the new rules and recommendations. For
example, the introduction of SHA3 in 2015, and consequently,
the requirement to phase out certificate chains with SHA1 by
2017 naturally led to the certificates being reissued.

The drastic shift is clearly visible in recent years. The
overwhelming majority (77-90%) of certificates collected in
2020 and 2021 are encountered across multiple time ranges.
This fact suggests that organizations are not replacing their
certificates as frequently as expected. Many of these certifi-
cates are shared between our sets, we thus focus specifically
on the shared RSA certificates and keys.

VII. THE SHARED RSA CERTIFICATES

Out of 155,000,190 valid RSA certificates, 10,110,361
(6.5%) are shared across the collected datasets (Table IV).

There are common scenarios where certificates can be
potentially shared across multiple hosts and domains. A certifi-
cate may belong to an organization that serves this certificate
across several IP addresses that belong to it. Conversely,
a certificate may come from a third-party hosting provider
supporting multiple clients. Historically, an SSL certificate
was issued to a host/domain name indicated in the ”Common

Fig. 3: The use of distinct certificates across time.

Name” field within the ”Subject” field of the certificate,
establishing a one-to-one mapping between a certificate and
a host. With the growing prevalence of website hosting, in
2000 [57], certificates were permitted to encompass more
than one domain name, enabling the utilization of a sin-
gle certificate across multiple hosts through the use of the
”Subject Alternative Name” extension. This development led
to providers commonly employing custom certificates that
encompass multiple domains or organizations within a single
certificate. These certificates could be served from a single
IP address belonging to a hosting provider, by using wildcard
certificates8.

In the following subsections, we look at the various aspects
of the certificate reuse phenomenon.

A. Reuse of certificates over time

The vast majority of all shared certificates are shared
between the Rapid7 set and other sets. A large cluster of
SSL certificates is seen in our collected TLS/SSL and Rapid7
set. The presence of these shared certificates is not surprising.
Both sets overlap in time (the year 2013), hence, they may
potentially include certificates obtained from the same hosts.
However, further timeline analysis of these shared certificates
shows a significant time gap, i.e., the fingerprint of certificates
found in TLS/SSL set match certificates collected by Rapid7
during 2019-2021 (Figure 3). This implies that many certifi-
cates have been reused by different hosts for 7-8 years.

For example, out of the certificates that were analyzed, 58
have been consistently used since 2013 and have appeared
a total of 6,873 times across our datasets. Interestingly, 31
of them were self-signed with the sha1WithRSAEncryption
signature algorithm and were issued by GlobalSign, one of the
largest CAs, that is a part of the CA/B (Certification Author-
ity/Browser) Forum, an industry organization that establishes
guidelines and best practices for issuance and management of

8In RFC 2818, section 3.1 allows for wildcard character * which is
considered to match any single domain name.
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TABLE IV: The shared RSA certificates

Datasets Total shared Unique shared in
each set**

Certificates shared with other sets
Collected
TLS/SSL Rapid7 Malware SBA Android

apks
Collected TLS/SSL 752,029 (7.44%) 752,029 (100%) * 751,993 0 3,948 1
Rapid7 863,792 (8.54%) 863,284 (99.94%) 752,309 * 491 114,733 227
Malware 8,302,431 (82.12%) 377 (<0.01%) 0 8,299,100 * 0 2,338,672
SBA 191,919 (1.90%) 114,734 (59.78%) 17,496 191,879 0 * 0
Android apk 190 (<0.01%) 190 (100%) 1 187 58 0 *
Total 10,110,361 1,730,614 863,323 (8.54%) are distinct across sets
∗∗ duplicates within a set are removed, across sets retained

digital certificates. These 58 certificates are leaf certificates,
and their key usage-related extensions indicate that they are
intended for various purposes including internal CA use (29
certificates), browser use (6 certificates), device authentication
use (16 certificates), and authentication for firewall and secu-
rity gateways (7 certificates).

Over time, the validity period of certificates varied accord-
ing to their usage. For example, in cases when renewing
certificates was not feasible, RFC 5280 [19] released in 2008
allowed to issue certificates with no expiration date. However,
the validity of certificates has since been significantly short-
ened.

In 2013, the CA/B Forum, in its baseline requirements docu-
ments, stated that certificates issued after July 2012 should not
exceed a validity period of 5 years. Additionally, certificates
issued after April 2015 should have a validity period not
exceeding 39 months [58].

In 2017, the CA/B Forum established the maximum validity
of certificates to two years (825 days). Prior to this, the
maximum validity was three years for most certificates. In
2020, NIST recommended the maximum validity period for
certificates should be one year or less [59]. In 2022, the CA/B
Forum set the maximum validity period of a TLS certificate to
398 days9. In March 2023, Google announced that the maxi-
mum certificate validity will be soon reduced to 90 days for
all publicly trusted TLS certificates. While recommendations
leading to shorter certificate validity emphasize the idea of
regularly rotating keys to enhance security and mitigate the
potential impact of key compromise, these guidelines do not
affect already issued certificates, effectively facilitating the
reuse of legacy certificates.

Further investigation revealed that one of these consistently
used certificates, which employs the sha1WithRSAEncryption
signature algorithm, has been shared 5,989 times, 4 times in
the Rapid7 set and 5,985 times in the Malware set. This is
a CA signing certificate distributed by GlobalSign, i.e., this
certificate can be only used by a CA to sign other certificates
and CRLs. Although we retained only leaf certificates in our
analysis, it appears to be a root certificate signed with an
outdated signature algorithm. Hence, the presence and the
reuse of this certificate across malware and other sets is
puzzling and dangerous, considering that CA certificates serve
as the foundation of trust in the PKI ecosystem. Such incidents
underscore the growing concerns to investigate the situation of
shared certificates and keys deeper.

9https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-
1.8.4.pdf

B. Reuse of certificates for different purposes
While the overlap between the collected TLS/SSL set and

Rapid7 is expected, the other cases reveal worrisome patterns.
For example, we observed that 28% of certificates used in ma-
licious binaries can also be found in Android apps (Table IV).
There have been reports of malicious binaries signed with valid
certificates [60], [61] in the past. The reappearance of this
problem in Android apps that were collected in 2020, and are
supposed to be legitimate, indicates that this phenomenon may
be more widespread than initially believed.

We also identified a considerable amount of certificates
shared between malware and the Rapid7 sets, i.e., with almost
all certificates collected from malware binaries (99.9%) found
in the Rapid7 set containing TLS/SSL certificates.

Although both types of certificates are integral to the PKI
ecosystem, they have different purposes. The code signing
mechanism allows authentication software publisher, while
an SSL certificate serves to verify the identity of a server.
Typically, the purpose of the certificate can be specified in
the ”Key Usage” and ”Extended Key Usage” field of the
certificate. Certificates issued for one purpose should not be
used for different usage (e.g., a TLS certificate cannot be used
to sign code). However, the overlap shows that at some point
these malicious certificates were used for both purposes.

C. Weak signatures algorithms
Valid digital certificates must be signed by the certification

authority that issued them. While RFC 3279 [62] and its
subsequent versions permit the use of any public key signa-
ture algorithm in conjunction with a one-way hash function,
NIST recommends appropriate hash functions based on the
algorithm’s strengths.

To examine the cryptographic algorithms utilized by the
certificate issuer to produce their digital signatures, we ex-
tracted the object identifiers (OID) of the cipher algorithms
from the digital signature section of the certificates. For ease of
interpretation, we resolved the OIDs into their corresponding
algorithm names. For instance, the OID 1.2.840.113549.1.1.5
was translated to sha1WithRSAEncryption.

The list of the observed signature algorithms in shared
certificates is shown in Table V. The table lists a total of
10,110,361 certificates that were associated with 863,323
unique fingerprints (Table IV).

We discovered that the use of obsolete algorithms among
certificates is significantly high.

The vast majority of the shared certificates (> 9 million)
are signed using the RSA algorithm with SHA-1 and MD5
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TABLE V: Signature algorithms seen in shared certificates

Signature algorithm Total shared Unique certificate
sha1WithRSAEncryption 8,986,133 770291 (8.57%)
md5WithRSAEncryption 536,080 62830 (11.72%)
sha256WithRSAEncryption 275,416 26451 (9.60%)
sha384WithRSAEncryption 272,627 27 (0.01%)
md2WithRSAEncryption 32,644 15 (0.05%)
sha1WithRSA 5,646 2818 (49.91%)
sha512WithRSAEncryption 1,635 801 (48.99%)
rsaEncryption 116 58 (50.00%)
dsaWithSHA1 20 10 (50.00%)
rsassaPss 20 10 (50.00%)
ecdsa-with-SHA256 8 4 (50.00%)
shaWithRSAEncryption 4 2 (50.00%)
ecdsa-with-SHA1 4 2 (50.00%)
ecdsa-with-SHA512 4 2 (50.00%)
GOST R 34.11-94 with GOST R 34.10-2001 2 1 (50.00%)
sha224WithRSAEncryption 2 1 (50.00%)
Total 10,110,361 863,323 (8.54%)

hashing. Both have not been recommended for use. NIST
deprecated the use of SHA-1 in 2011 and disallowed its use
for digital signatures in 2013 [63]. Although our TLS/SSL
set was collected at the end of 2013, the total number of
these certificates (863,871) is several times smaller than the
observed number of certificates with the use of SHA-1 algo-
rithm (e.g., dsaWithSHA1, ecdsa-with-SHA1, sha1WithRSA,
sha1WithRSAEncryption).

Similarly, the MD5 hashing algorithm has been considered
broken, and unacceptable for use in digital signatures since
2008 [64], [65]. Yet, over 500,000 shared certificates using
MD5 hashing are still in use. Out of these certificates, the Mal-
ware set accounted for the largest proportion, i.e., 75.87% of
certificates, followed by Rapid7 (11.73%), TLS/SSL (10.90%),
and the SBA dataset (1.50%).

To our surprise, we noticed that roughly 32,000 shared
certificates were signed with the MD2 hashing algorithm,
which was deprecated in 2011 [66], and thus should not have
been present in any of our collections.

Unexpectedly, we also found a certificate, shared two times,
that uses GOST hashing functions as the signature algorithm
which based on RFC 4491 [67] was a valid algorithm for PKI
and CRL profile but has been removed from the OpenSSL
family of libraries in 201610.

Our numbers indicate that the use of stronger signature
algorithms (e.g., SHA-256, SHA-512) is barely noticeable
(∼3%) among the shared certificates. We note that in 2015,
NIST recommended the minimum use of SHA-256 for any
application of hash functions requiring interoperability11, and
in 2020, NIST made it a requirement for all certificates to
be signed with an approved signature algorithm and hash
algorithm, such as SHA-256 [68].

D. Who uses shared certificates

We identified 863,323 unique certificates across all sets
(Table IV), linked to 29,937,166 reachable IP addresses. While
not every shared certificate is linked to an IP address in our
sets, all corresponding IP addresses are unique.

10https://www.openssl.org/news/changelog.txt
11https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-

Functions

Fig. 4: The distribution of shared certificates among IP ad-
dresses.

The majority of these hosts are mainly linked to a single
distinct shared certificate, meaning that most hosts in our sets
use the same certificate as only one other host. Out of the total,
17,785,693 addresses (59.41%) utilize a single certificate,
while 12,151,473 IP addresses (40.59%) are connected to
multiple distinct shared certificates, as illustrated in Figure 4.

By focusing our attention on the IP addresses associated
with 13 or more certificates, we found a total of 228 distinct
certificates duplicated 4,122,199 times and issued by a variety
of organizations.

Given a large number of frequently shared certificates, we
next analyzed what devices and applications are associated
with these certificates.

We scanned IP addresses that share certificates using
the nmap application between December 2021 to February
2022. Out of 29,937,166 IP addresses that share certificates,
1,557,199 IP addresses replied with a valid response to the
nmap scan. Due to the time gap between collection and
analysis, we validated certificates. To unambiguously match
an IP address to the corresponding certificate, we initiated
a TLS/SSL connection with the IP addresses of the shared
certificates. We requested their current certificate and matched
their fingerprint with the one we have stored in our records.
This step ensured that the host/organization using the IP
address is the same and our further analysis is relevant. 51.32%
of shared certificates were validated. Our further analysis
focuses on IP addresses with validated certificates.

For the majority of these 1,557,199 hosts, nmap was able
to identify the operating system (OS) (89.62% hosts) and
the device type (88.24% hosts). The remaining cases were
categorized as ”None” since nmap could not provide any
information on the hosts’ software or hardware. The summary
of the nmap scan is given in Table VI.

Our scan discovered 169 distinct operating systems within
1,395,662 hosts that served shared certificates. We investigated
the top 20 OSs based on the frequency of responded IP
addresses (see Table VII).

Our analysis shows that the shared certificates are predom-
inantly used by embedded network devices including routers,
mobile phones, printers, and firewalls with the majority of
them using OS derived from Linux and BSD distributions.
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TABLE VI: The summary of nmap scan

Total shared certificate 10,110,361
Validated shared certificates 5,188,895 (51.32%)
Total IP addresses 29,937,166
Hosts with valid nmap response 1,557,199

Fingerprinted OS
Hosts with validated certificates 1,395,662
None 161,537

Fingerprinted device
Hosts with validated certificates 1,374,178
None 183,021

Linux 3.18 OS, released in 2014, is found to be the most
common OS serving shared certificates by the majority of
hosts. Google and other vendors seem to be utilizing Linux
3.18 on numerous Android-based devices. Some Chromebooks
are also operating on the same kernel version as part of
Chrome OS. We further investigated the device types of IP
addresses associated with this OS and not surprisingly all
matched devices are categorized as general-purpose computing
systems.

Apart from Linux kernels, the rest of the operating sys-
tems indicate network-connected devices, such as HiveOS,
SSG firewall, wireless and ADSL routers, webcams, printers,
printer servers, terminal servers, and home security controllers,
which have embedded computing capabilities and can be
remotely managed and monitored. Most of the devices using
shared certificates come from a handful of manufacturers:
ZyXEL Communications Corporation, Aerohive Networks,
IPEX Group, Siemens, D-Link Corporation, TRENDnet, Pana-
sonic Corporation, Juniper Networks, Apple, Canon, Vivint
Smart Home, Cisco Systems, Microsoft Corporation, Epson
Corporation, and Moxa.

We also see a large number of shared certificates used
over an extended period of time. For example, the devices
identified as the ”Efficient Networks 5930 ADSL router”
released in 2002, and the ”Cisco 7200 router” released in 2005
are among the oldest seen in our scan, pointing that these
shared certificates might have been actively used for over two
decades.

To validate these observations, we delved deeper into
the certificates’ validity periods. Our investigation revealed
certificates with notably extended validity periods, starting
from their manufacturing date and spanning up even to an
impressive 50 years. There are a total number of 48,794 IP
addresses and 950 distinct certificates associated with these
older systems. It appears these instances are indicative of
factory-default certificates being in use.

We also analyzed our shared certificates for the presence
of certificates generated with default parameters by looking
at certificates generated by Linux and BSD systems that still
use so-called ”Sneak Oil” certificate generation scripts, for
automatically generating self-signed certificates. We found
that 381 certificates were associated with systems that used
default configuration options to establish encrypted TLS/SSL
communications.

With the legacy status of the devices, we
anticipated finding outdated cryptographic settings.
Indeed, the vast majority of certificates (92%) were

signed with weak signature algorithms that were
introduced before sha256WithRSAEncryption, including
md5WithRSAEncryption and sha1WithRSAEncryption
present in our set (Table VII). We discovered that around
33% of these certificates relied on weak RSA keys with key
lengths less than 2048.

We conducted a similar analysis to identify the hardware
hosting the shared certificates which confirmed our conclu-
sions (see Table XIII). The results of this analysis suggest
that despite frequent updates and stricter guidelines, embed-
ded network devices continue to persist on the network for
extended periods.

VIII. THE SHARED RSA KEYS

In the previous section, we delved deeper into the phe-
nomenon of shared certificates, yet, we were surprised to dis-
cover that multiple distinct certificates were serving identical
public keys, i.e., identical modulus and/or exponent.

There are legitimate scenarios for a given organization to
retain the same key to re-issue a certain certificate for example
in the case of having the private key contained with a hardware
security module (HSM) [59] or to reuse the same key for
different certificates to ease inner authentication procedures.
However, this approach could pose security concerns if the key
is weak or vulnerable. Additionally, key reuse across different
organizations could become a potential vector for compromise.
Therefore, we decided to not only match certificates but also
conduct a pairwise comparison of valid RSA keys across all
sets.

We found that 10.16% (17,141,441) of all keys are shared
across sets, and 87% (14,862,767) of these duplicate keys
(116,868 distinct) appear in distinct certificates (see Ta-
ble VIII).

A. Vulnerable keys
In our initial analysis (Section VI), we discussed several

weaknesses associated with all RSA keys, here we specifically
examine weaknesses of the shared keys.

1) Weak key size: Our analysis found that 44% of shared
keys can be considered weak, i.e., with key length < 2048 bits
(Table IX). This can be interpreted as a strong indicator of the
association of duplicate keys with their perceived vulnerability
level.

2) ROCA: We identified one shared key vulnerable to
ROCA vulnerability. The key was duplicated 16 times in
the Rapid7 dataset with 3 different signature algorithms,
i.e., md5WithRSAEncryption, sha1WithRSAEncryption, and
sha256WithRSAEncryption. However, our cursory check re-
vealed different issuers and owners corresponding to these
certificates.

3) GCD-Factorable: Among the 793,694 factored RSA
keys, 191,236 are duplicate keys that appear in distinct certifi-
cates. As expected, almost all of these factored keys are less
than 2048 bits in length (Table XI). Interestingly, duplicate
keys retrieved from SSH hosts, malware executables, and
Android apps, appear to be noticeably absent from GCD
factorable keys, i.e., we were able to factor only 12 SSH keys
and none of the Android or malware keys.
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TABLE VII: The top 20 operating systems seen in hosts sharing certificates

OS Name Released
Year IP frequency Unique

shared certs
Key Size Signature

≥2048 bits <2048 bits Strong∗ Weak
Linux 3.18 2014 721,818 (51.72%) 7,970 5,847 (73.36%) 2,123 (26.64%) 502 (6.30%) 7,468 (93.70%)
ZyXEL ZyWALL 70 firewall
(ZyNOS 3.65) 2008 173,036 (12.40%) 4,232 2,532 (59.83%) 1,700 (40.17%) 150 (3.54%) 4,082 (96.46%)

Aerohive HiveOS 6.8 2018 136,509 (9.78%) 2,053 1,278 (62.25%) 775 (37.75%) 115 (5.60%) 1,938 (94.40%)
Linux 3.13 2014 59,597 (4.27%) 1,107 737 (66.58%) 370 (33.42%) 136 (12.29%) 971 (87.71%)
iPXE 1.0.0+ 2010 56,355 (4.04%) 965 629 (65.18%) 336 (34.82%) 64 (6.63%) 901 (93.37%)
Linux 2.6.32 2009 55,700 (3.99%) 1,309 976 (74.56%) 333 (25.44%) 72 (5.50%) 1,237 (94.50%)
Efficient Networks 5930 ADSL router 2002 43,924 (3.15%) 868 495 (57.03%) 373 (42.97%) 64 (7.37%) 804 (92.63%)
D-Link DWL-624+ or DWL-2000AP
or TRENDnet TEW-432BRP WAP 2005-2007 19,926 (1.43%) 750 429 (57.20%) 321 (42.80%) 62 (8.27%) 688 (91.73%)

Panasonic BL-C210A webcam 2009 13,463 (0.96%) 140 104 (74.29%) 36 (25.71%) 35 (25.00%) 105 (75.00%)
Juniper Networks SSG 20 firewall 2006 10,397 (0.74%) 146 94 (64.38%) 52 (35.62%) 35 (23.97%) 111 (76.03%)
Apple iOS 8.0 - 8.1 (Darwin 14.0.0) 2014 9,070 (0.65%) 387 264 (68.22%) 123 (31.78%) 49 (12.66%) 338 (87.34%)
Canon i-SENSYS MF5490dn printer 2008 7,235 (0.52%) 109 78 (71.56%) 31 (28.44%) 33 (30.28%) 76 (69.72%)
Linux 2.6.18 - 2.6.22 2006-2007 7,048 (0.50%) 264 171 (64.77%) 93 (35.23%) 49 (18.56%) 215 (81.44%)
Vivint alarm panel (Linux 2.6.21) ukn. 4,889 (0.35%) 174 106 (60.92%) 68 (39.08%) 35 (20.11%) 139 (79.89%)
Cisco 7200 router (IOS 12.4) 2005 4,870 (0.35%) 82 73 (89.02%) 9 (10.98%) 38 (46.34%) 44 (53.66%)
Panasonic WV-SP300
or WV-SF330 webcam 2010-2011 4,868 (0.35%) 72 63 (87.50%) 9 (12.50%) 32 (44.44%) 40 (55.56%)

Microsoft Windows Server 2012 R2 2012 4,868 (0.35%) 168 110 (65.48%) 58 (34.52%) 42 (25.00%) 126 (75.00%)
Epson UB-E02 print server ukn. 4,756 (0.34%) 334 168 (50.30%) 166 (49.70%) 37 (11.08%) 297 (88.92%)
Moxa NPort 5610 terminal server ukn. 4,540 (0.33%) 154 102 (66.23%) 52 (33.77%) 34 (22.08%) 120 (77.92%)
Linux 4.9 2016 4,040 (0.29%) 82 69 (84.15%) 13 (15.85%) 37 (45.12%) 45 (54.88%)
Total - 1,346,909 (96.51%) 21,366 14,325 (67.05%) 7,041 (32.95%) 1,621 (7.59%) 19,745 (92.41%)
’*’ Strong: signature algorithm is either sha256WithRSAEncryption, sha384WithRSAEncryption, or sha512WithRSAEncryption

TABLE VIII: The shared RSA keys

Shared keys found in distinct certificates

Datasets Total number of
shared keys

Unique shared
in each set**

Shared keys
with distinct
certificates

Unique shared
keys with distinct
certificates**

Collected
TLS/SSL

Collected
SSH Rapid7 Malware SBA Android

apks

Collected
TLS/SSL

767,709 754,324
(98.26%)

123,582 110,197 (89.17%) * 48 123,581 11 805 0

Collected SSH 195,107 169,851
(87.06%)

3,961 2,502 (63.17%) 1,039 * 3,961 0 2 0

Rapid7 7,619,478 1,034,226
(13.57%)

6,556,755 116,867 (1.78%) 6,528,028 8,519 * 898 38,279 594

Malware 8,366,724 320 (<0.01%) 8,165,826 145 (<0.01%) 133 0 8,157,286 * 0 2,899,636
SBA 192,210 114,492

(59.57%)
12,524 4,593 (36.67%) 4,657 3 12,523 0 * 0

Android apks 213 196 (92.02%) 119 102 (85.71%) 0 0 117 58 0 *
Total 17,141,441 1,034,263

(6.03%) distinct
across sets

14,862,767
(86.71%)

234,406 (1.58%) 116,868 keys (0.79%) are distinct across sets

∗∗ duplicates within a set are removed, across sets retained

B. Sources of duplicate keys

The majority of the keys are shared between the Collected
TLS/SSL and Rapid7 sets. To limit the impact of a potential
key compromise, organizations use different keys for distinct
purposes when they need more than one certificate. However,
in some cases, for example, for consistency in single sign-on
mechanisms using the SAML12, load-balanced environments,
multi-domain SSL certificates, and shared hosting situations,
organizations may prefer or need to use the same key for
different certificates, provided that the certificates are related
in terms of the owner.

To understand the reasons behind duplicate keys in our
collections, we analyzed the ”Subject” field in selected cer-
tificates and subsequently parsed the ”Organization” field of
these shared keys. We observe that only 7,060 (6.04%) out

12Security Assertion Markup Language

of 116,868 distinct keys have similar ”Organization” values.
Hence, common practices of legitimate key reuse appear to be
responsible for only a small amount of duplicate keys.

Our observations in Table IX also point out that around 99%
of unique weak keys are associated with both Rapid7 (100%)
and our own collected TLS/SSL (98.42%) datasets.

Interestingly, duplicate keys retrieved from SSH hosts, mal-
ware executables, and Android apps, appear to be compliant
with NIST regulations (Table IX). When it comes to SSH
keys, it is common for clients to be updated, which means that
the majority of SSH keys should adhere to current standards.
Similarly, keys associated with software compilation, such as
malware executables and Android APKs, require compatibility
with current standards due to compiler prerequisites. Conse-
quently, these keys are more likely to be stronger.

The most commonly shared key that we could identify in
our sets has been seen 3,454,586 times in the Rapid7 set.
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TABLE IX: Shared RSA public key size

Key size
range(bits)

Frequency
Total Total Unique TLS/SSL SSH Rapid7 Malware SBA Android apks

0-1023 832,184 (5.59%) 2,193 (0.26%) 2,182 0 2,193 4 9 0
1024-2047 5,763,788 (38.78%) 35,583 (0.62%) 35,000 208 35,583 36 408 15
2048-4095 8,110,887 (54.57%) 76,695 (0.95%) 71,097 2,245 76,694 92 3,733 80
4096-8191 155,860 (1.05%) 2,383 (1.53%) 1,907 49 2,383 13 440 7
8192-up 48 (<0.01%) 14 (29.17%) 11 0 14 0 3 0
Total 14,862,767 116,868 (0.79%) 110,197 2,502 116,867 145 4,593 102

This key is associated with 3,454,586 distinct TLS certificates,
mostly belonging to the same organization, Lancom Systems.
We have different records for these certificates. They were
served by 11 distinct IPs, and classified once by nmap as
a ”general purpose” device served by Microsoft Windows
Server 2008 SP2. This key is weak, its key modulus length
is 1024 bits. The associated certificates were signed with the
sha1WithRSAEncryption algorithm, but our TLS scan showed
this key still is being served in certificates for an extended
period of time despite its obvious weaknesses.

Another source of concern is the presence of shared keys
between web (Rapid7 and Collected TLS/SSL) and file (Mal-
ware and Android apks) datasets. For example, most RSA keys
found in malware samples are served by TLS hosts, and 49%
of keys used by Android apps are used to sign malware. This
suggests that corresponding private keys are within the reach
of malware authors or attackers. This presence of shared keys
points towards a broader issue within the PKI ecosystem.

C. Key generators

Duplicated keys, where the same cryptographic key is
generated more than once, serve as a warning sign and raise
concerns about the security of the key generation process.
Consequently, any similar keys produced using the same
library should be viewed as questionable. It suggests a lack of
proper security measures during key generation, making the
generated keys unreliable and vulnerable to exploitation.

To identify the origin of the shared RSA keys, we have
adopted an approach for a fine-grained RSA key origin attribu-
tion proposed by Branca et al. [14]. The approach is based on
spatial characteristics of RSA moduli associated with different
library implementations, consequently, allowing for accurate
origin attribution.

We have retrained the Random Forest model using their
generated set of 6.5 million RSA keys which contains details
on the type and version of potential libraries used to generate
each key. We utilized this model to deduce the libraries and
their versions responsible for generating the shared RSA keys.
The resulting set of 17,141,441 public keys contains 1,034,263
distinct RSA moduli. We retraced each modulus back to
the original keys to confirm the corresponding dataset (see
Table XIV).

We found that the shared keys were predominantly gen-
erated by OpenSSL (97%) and GnuTLS (3%) libraries. This
is not surprising as OpenSSL is the most widely used open-
source cryptographic library installed by default in many Linux
kernel-based systems.

The problems with low entropy pool affecting the generation
of RSA key prime numbers in OpenSSL 1.0.0 on Linux-

TABLE X: Predicted libraries per modulus

Library Number
of moduli

Affected
keys

Modulus size range (bits)
0-1023 1024-2047 2048-4095 4096-8191 8192-up

OpenSSL 1.1.x 1,002,727 17,004,035 824,147 6,444,725 9,556,530 178,406 227
GnuTLS 3.6.x 20,989 99,343 14,987 34,218 42,968 7,170 0
GnuTLS 2.2.x 10,451 37,440 5,834 14,747 16,505 354 0
OpenSSL 1.0.x 94 619 294 182 135 8 0
GnuTLS 3.1.x 1 2 0 2 0 0 0
GnuTLS 2.1.x 1 2 0 0 2 0 0
Total 1,034,263 17,141,441 845,262 6,493,874 9,616,140 185,938 227

.x stands for all minor versions

based systems were discovered by Heninger et al. [4]. This
is again not surprising as OpenSSL library versions 1.0
and 1.1 have a history of issues related to random number
generation implementations (e.g., CVE-2015-0285 [69], CVE-
2015-3216 [70], CVE-2019-1549 [71]). However, only a few
versions of OpenSSL and GnuTLS libraries appear to be
responsible for duplicate keys (Table X). For example, the
OpenSSL 1.1.x library generated around 97% of duplicate
keys. As expected (based on Tables II and VII), more than
half of these keys are on the upper end of the key numerical
range, i.e., 57% of OpenSSL 1.1.x keys have a length 2048
bits or more. This appears to be common among all affected
keys.

Although OpenSSL release notes of the 1.1.1 version state
that the random number generator was completely rewritten
to address this problem, the presence of weak moduli in
a considerable percentage of our shared keys suggests that
conditions may persist and be related to the issues of the
aforementioned entropy pool. It is worth mentioning that
there are 189,405 SSH keys that our analysis predicts were
likely generated using older versions of the OpenSSL library.
This observation underscores not only the continued usage
of outdated cryptographic libraries used in web protocols as
well as libraries targeted at infrastructure services such as SSH
(Table XIV).

TABLE XI: GCD-factorable shared RSA keys

Impacted distinct shared keys 3,182
Impacted shared keys 191,236
Dataset

TLS/SSL 3,856
SSH 12
Rapid7 187,368
Malware 0
Android apks 0
SBA 0

Key size
0-1023 327
1024-2047 190,884
2048-4095 25

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2024.3495617

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON NETWORKING 14

TABLE XII: Unresolvable signature algorithms seen in cer-
tificates with shared keys

Signature algorithm Total certificates
1.2.840.113549.1.60.21 26,449
1.2.840.113549.1.60.20 8,613
1.2.840.113549.1.60.27 473
1.2.840.113549.1.60.26 29
1.2.840.113549.1.60.29 3
1.2.832.113549.1.1.4 1
1.2.840.113037.1.1.5 1
1.2.840.113548.1.1.5 1
1.2.840.114573.1.1.5 1
Total 35,571

D. Certificates with shared keys

Furthermore, to identify legacy public key material, we
started from 116,868 distinct public keys that we identified to
be shared across all sets, this allowed us to detect 14,895,604
certificates that 14,444,022 (96.97%) certificates were linked
to either SHA1 (e.g. sha1WithRSAEncryption, sha1WithRSA)
or MD5 hashing algorithms, both of which are no longer sup-
posed to be used for general or browsing purposes, according
to NIST recommendations [72].

Also, out of 14,895,604 certificates, a total of 35,571 certifi-
cates were found to be using not-standard OIDs as signature
algorithms, as shown in Table XII.

We also observed that out of 35,571 certificates correspond-
ing to 15,714 keys, 138 keys have been found to be related
to 6,114 certificates, collected after 2017, related to hosting
companies (OVH, GoDaddy.com, Inc., GANDI SAS), secu-
rity devices (Fortinet Ltd., SonicWALL), wireless appliances
(Ruckus Wireless, Inc., D-LINK), storage appliances (EMC
Corporation), SSL libraries using custom formats (AlphaSSL),
companies related to EV and DV certificate validation schemes
(DigiCert Inc), and collaboration servers (Zimbra Collabora-
tion Server).

IX. DISCUSSION

a) Findings: The presence of duplicated cryptographic
keys can be an alarming indicator when it deviates from
established security guidelines. It implies a potential absence
of adequate security protocols during the key generation and
management, resulting in unreliable keys prone to exploitation.
This duplication may stem from various reasons, e.g., errors in
the key generation algorithm or weaknesses in the underlying
library used for key generation. Regardless of the cause, the
presence of duplicates raises red flags and casts doubt on the
overall security of the PKI ecosystem.

The results derived through our analysis shed light on:
• The persistently weak state of RSA keys: Our analysis

extends over a considerable length of time, spanning up
to nine years in certain datasets (Rapid7 and Malware)
which gives us a unique historical view of RSA key
security. While numerous previous studies have suggested
improvements in the quality of RSA keys, our analysis
reveals a different outcome. For example, we factored
185,731 unique moduli corresponding to 793,694 RSA

keys (181,784 unique). In 2012, Heninger et al. [4]
reported finding divisors for 2,314 moduli for 16,717
distinct public keys, and in 2016, Hastings et al. [42]
factored 313,000 RSA keys.
Despite conducting our analysis almost 10 years after
the initial report, we still observed significantly higher
numbers, which is a disheartening outcome. The com-
prehensive and large-scale nature of our study, however,
gives a more realistic view security state of the PKI
ecosystem. Although the solution to this situation appears
to be simple—enforcing strong key generation - many
cryptographic libraries, such as OpenSSL, still allow for
the generation of weak keys essentially weakening the
PKI environment.

• Shared RSA keys are weak: We found that 87%
(14,862,767) shared keys appear in distinct certificates,
out of which we found that 44% are weak in terms of
key length and 1.3% (191,236) were factored due to weak
prime number selection (See Subsection VIII-A). We also
noticed that 92% of all certificates shared among devices
were found to be non-compliant with the NIST standards.

• Origins of shared RSA keys are predictable: We found
that shared keys were predominantly generated using
outdated and vulnerable libraries, resulting in inherently
weak and vulnerable keys. Predicting the cryptographic
library responsible for generating specific keys, while
emphasizing the importance of key attribution, plays a
crucial role in forensic investigations. It allows forensic
analysts to untie the origins and traceability of crypto-
graphic keys used in various security contexts, enabling a
deeper understanding of the nature and scope of breaches
or unauthorized access.

• TLS certificates are widely reused for different purposes:
Aside from the presence of vulnerable cryptographic
attributes, another factor contributing to the weaknesses
in the PKI is the utilization of certificates beyond their
intended scope. Certificates issued for a specific purpose
should not be used for any other usage. In reality,
the certificates are being used interchangeably. Almost
all certificates found in malicious binaries, 8,299,100
(99.9%), were served by TLS hosts in the Rapid7 set.
2,338,672 (28%) certificates used in malicious binaries
were also used for signing Android apps.

• Overwhelmingly high use of obsolete algorithms among
shared certificates: 95% of the shared certificates are
signed using deprecated hashing algorithms, which were
already considered obsolete by the time of our certificate
collection. Such a significant presence of non-compliant
certificates points to the bigger problem within the PKI
ecosystem.
Weak hashing algorithms can undermine the integrity
and authenticity of TLS certificates and allow attackers
to create fraudulent certificates leading to impersonation
and unauthorized access. It becomes easier for attackers
to tamper with the certificate data without detection.
This compromises the trustworthiness of the certificates
and opens the door to various security risks, such as
man-in-the-middle attacks or the interception of sensitive
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information. Finally, weak hashing algorithms hinder the
long-term security and validity of TLS certificates. As
cryptographic attacks evolve and computational power
increases, weak hashing algorithms become even more
susceptible to brute-force and collision attacks. Although
the certificate community (CA/B Forum) appears to be
moving towards reduced longevity of certificates, the lack
of enforcement for revocation of legacy certificates and
re-issuance for devices using them leads to continued
use of these certificates and consequently weakens the
security of the public-key infrastructure.

• The shared certificates are predominantly used by legacy
embedded network devices: Many shared certificates ap-
pear to be served by legacy devices. Over half of validated
shared certificates (55%) come from devices that pre-date
our data collection period. The rest are served by devices
released in 2014. All these certificates are currently in
use.

b) Recommendations:

• Legacy devices. An obvious solution to many of the
discussed problems is adopting stricter practices and
guidelines for key generation, storage, distribution, and
revocation. It can mitigate risks associated with compro-
mised or leaked keys. This is the path that the Certificate
authority community has been following, i.e., gradually
phasing out support for older standards and implementing
shorter validity periods for certificates and keys. This
unfortunately leaves often unupdateable legacy devices in
an even more isolated state creating inherit security gaps.
There are generally no guidelines for the treatment of
legacy devices, and the approaches their owners take vary
drastically from ignoring the problem, to downgrading se-
curity standards, and running several PKI infrastructures
in parallel.
Given the rapidly evolving technological capabilities and
constant improvements in security policies, a more se-
curity cautious approach for embedded devices would
be 1) creating consistent guidelines for the treatment of
all devices across all libraries; 2) adopting automated
updates of the device factory-default certificates, similar
to how web hosting environments regularly update their
certificates; 3) for devices maintaining outdated certifi-
cates and encountering obstacles in the renewal process,
to minimize their exposure within broader networks as a
means of reducing the attack surface.

• The development of domain-specific policy engines,
which can interpret the requirements of a particular
domain regarding certificate attributes and extensions
while complying with the latest NIST recommendations,
presents a potential approach to reducing the reuse of
generic certificates for various purposes.

• Client applications of certificate-using systems can also
contribute to the gradual improvement of certificate se-
curity by conducting compliance checks. These checks
involve verifying the service provider’s adherence to
regulations and industry standards to ensure effective
cryptographic key management, as well as monitoring

certificate revocations.
• Maintaining a large-scale view of PKI. The analysis

conducted in our study highlights the extent of sharing
of certificates and keys across the PKI ecosystem. While
individual CAs may not have a comprehensive view of
the Internet, our developed KeyExplorer platform can be
utilized for identifying instances of certificate reuse.

X. ETHICS CONSIDERATIONS

Internet-wide network scans may be perceived as an adver-
sarial and may trigger alerts from intrusion detection systems.
In our study, we were careful to work within ethical bound-
aries. First, we ensured that no data was collected from hosts
that necessitated credentials and no personal information was
gathered during our research process. Second, we avoided es-
tablishing application-level connections with hosts to traverse
domain boundaries.

XI. CONCLUSION

In this study, we conducted the most comprehensive
Internet-wide scan and analysis of TLS/SSL certificates and
RSA keys to date. Our study focused on the less explored
phenomenon of RSA public key reuse on the Internet. Col-
lecting a diverse set of over 254 million valid certificates and
almost RSA 170 million keys from multiple sources across
different points in time allowed us to not only investigate the
cryptographic characteristics of reused certificates and keys
but also confirm the persistence of their persistent spread in
network devices over time.

Although browser vendors tend to follow the latest standards
of cryptographic elements, we showed that deprecated hashing
algorithms and non-compliant key sizes are still widespread in
embedded network devices. The RSA keys found in malware
samples are currently served by TLS hosts and Android apps.
Known vulnerabilities remain unpatched on still accessible
devices and files. Owners and issuers of certificates and keys
should pay careful attention to the excessive use of duplicated
keys. The cross-domain use of certificates necessitates the im-
plementation of more domain-specific practices for certificate
management systems. Our study provides a valuable tool for
identifying vulnerabilities in cryptographic implementations,
and we hope it will be utilized by the owners and issuers of
the certificates and keys.
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TABLE XIII: Key properties of devices seen in shared certificates

Device Name IP frequency Unique
shared certs

Key Size Signature
≥2048 bits <2048 bits Strong* Weak

general purpose 868,432 (63.20%) 9,703 7,001 (72.15%) 2,702 (27.85%) 578 (5.96%) 9,125 (94.04%)
firewall 189,588 (13.80%) 4,398 2,631 (59.82%) 1,767 (40.18%) 159 (3.62%) 4,239 (96.38%)
WAP 140,013 (10.19%) 2,123 1,299 (61.19%) 824 (38.81%) 118 (5.56%) 2,005 (94.44%)
specialized 61670 (4.49%) 1,057 671 (63.48%) 386 (36.52%) 66 (6.24%) 991 (93.76%)
broadband router 46349 (3.37%) 887 501 (56.48%) 386 (43.52%) 65 (7.33%) 822 (92.67%)
webcam 18339 (1.33%) 156 118 (75.64%) 38 (24.36%) 38 (24.36%) 118 (75.64%)
phone 9321 (0.68%) 398 270 (67.84%) 128 (32.16%) 50 (12.56%) 348 (87.44%)
printer 7618 (0.55%) 135 91 (67.41%) 44 (32.59%) 36 (26.67%) 99 (73.33%)
router 5731 (0.42%) 104 78 (75.00%) 26 (25.00%) 38 (36.54%) 66 (63.46%)
print server 4756 (0.35%) 334 168 (50.30%) 166 (49.70%) 37 (11.08%) 297 (88.92%)
terminal server 4545 (0.33%) 156 103 (66.03%) 53 (33.97%) 35 (22.44%) 121 (77.56%)
load balancer 3549 (0.26%) 117 80 (68.38%) 37 (31.62%) 40 (34.19%) 77 (65.81%)
VoIP adapter 3325 (0.24%) 185 117 (63.24%) 68 (36.76%) 43 (23.24%) 142 (76.76%)
switch 3062 (0.22%) 91 66 (72.53%) 25 (27.47%) 24 (26.37%) 67 (73.63%)
proxy server 2933 (0.21%) 118 82 (69.49%) 36 (30.51%) 36 (30.51%) 82 (69.49%)
media device 1565 (0.11%) 157 98 (62.42%) 59 (37.58%) 35 (22.29%) 122 (77.71%)
storage-misc 1496 (0.11%) 330 190 (57.58%) 140 (42.42%) 30 (9.09%) 300 (90.91%)
terminal 1111 (0.08%) 79 65 (82.28%) 14 (17.72%) 30 (37.97%) 49 (62.03%)
VoIP phone 413 (0.03%) 105 51 (48.57%) 54 (51.43%) 27 (25.71%) 78 (74.29%)
remote management 349 (0.03%) 48 41 (85.42%) 7 (14.58%) 24 (50.00%) 24 (50.00%)
bridge 13 (<0.01%) 5 5 (100.00%) 0 (0.00%) 5 (100.00%) 0 (0.00%)
Total 1,374,178 20,686 13,726 (66.35%) 6,960 (33.65%) 1,514 (7.32%) 19,172 (92.68%)

’*’ Strong: signature algorithm is either sha256WithRSAEncryption, sha384WithRSAEncryption, or sha512WithRSAEncryption

TABLE XIV: Predicted libraries per dataset

Library Number of moduli Affected keys Frequency
TLS/SSL SSH Rapid7 Malware SBA Android apks

OpenSSL 1.1.x 1,002,727 17,004,035 744,543 189,405 7,534,379 8,350,100 185,408 200
GnuTLS 3.6.x 20,989 99,343 15,474 3,794 58,950 16,607 4,509 9
GnuTLS 2.2.x 10,451 37,440 7,623 1,891 25,632 17 2,273 4
OpenSSL 1.0.x 94 619 67 17 515 0 20 0
GnuTLS 3.1.x 1 2 1 0 1 0 0 0
GnuTLS 2.1.x 1 2 1 0 1 0 0 0
Total 1,034,263 17,141,441 767,709 195,107 7,619,478 8,366,724 192,210 213
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