
A Systematic Evaluation of Non-SDK
Interface Restrictions in Android:

Bridging the Gap Between Guidelines
and Practice

George Silva, Norah Ridley(B), Enrico Branca, and Natalia Stakhanova

University of Saskatchewan, Saskatchewan, Canada
norah.ridley@usask.ca

Abstract. Android non-SDK interfaces are APIs that are not part of
the official SDK and are restricted. Multiple studies have indicated flaws
and limitations of the usage of these non-SDK interfaces, prompting
Google to introduce restrictions on non-SDK interfaces to regulate access
to these interfaces. This study systematically evaluates the alignment
between the official Android guidelines for non-SDK interface usage and
the findings from Veridex, a Google tool that assesses the existence of
these non-SDK interfaces in Android applications. Our analysis considers
the three latest Android versions and reveals inconsistencies, including
mismatches in non-SDK interfaces and associated restrictions, as well
as contradictions in the enforcement of these restrictions. These incon-
sistencies highlight significant challenges in the regulatory framework,
potentially undermining the effectiveness of measures intended to secure
the Android platform.

Keywords: Android · Non-SDK interfaces

1 Introduction

Android is one of the most widely used mobile operating systems (OS) in
the world. The convenient and extensive access to phone resources adopted by
Android has quickly revealed inefficiencies of its existing protections. Android
non-SDK interfaces, or APIs that are not available for third-party developers,
are a part of these issues. These interfaces are not included in the official Android
Software Development Kit (SDK). Non-SDK interfaces, also referred to as hid-
den APIs, are also a part of the Android framework. These interfaces are typ-
ically used internally by the operating system developers to ensure access to
deeper system-level functionalities that are not available through the standard
SDK. Unlike public SDK interfaces, which are well-documented and supported
by Google, non-SDK interfaces are not intended for third-party app development.
They are not publicly documented or supported for general use, and they can

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
K. Adi et al. (Eds.): FPS 2024, LNCS 15532, pp. 217–234, 2025.
https://doi.org/10.1007/978-3-031-87499-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87499-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-87499-4_14

218 G. Silva et al.

change or be removed without notice in future Android releases. Thus, their sta-
bility and security are not guaranteed, and their usage by third-party developers
can lead to compatibility and security issues as the Android platform evolves.

Google began imposing restrictions on the use of non-SDK interfaces with
the introduction of Android 9, aiming to regulate access to critical parts of
the Android platform for applications and gradually block non-SDK interface
use. These restrictions have been progressively tightened in subsequent versions.
Several studies explored the use of non-SDK interfaces [21] and internal APIs [9]
in Android apps before and after Google introduced access restrictions on non-
SDK interfaces. At that time both studies noted that developers tend to ignore
Googles access control restrictions. Follow-up studies noted gaps in permissions’
documentation and their contradicting definitions [1] which lead to ambiguity,
increasing the risk of misuse and numerous security issues [7,21].

To help restrict the use of non-SDK interfaces in third-party apps, Google
provides several mechanisms to detect their presence. Among them is Veridex,
an official static analysis tool maintained by Google. Veridex relies on the official
restriction lists, serving to guide users in using restriction lists. While Veridex
is widely employed for analysis, its effectiveness and alignment with Googles
restrictions have not been systematically evaluated.

In this study, we focus on the consistency and reliability of non-SDK inter-
faces’ analysis. Specifically, we systematically investigate and measure the dis-
crepancies between the documented non-SDK interfaces in the restriction lists,
which serve as the official Google documentation of existing interfaces, and their
actual usage in Android apps as detected by Veridex. To achieve a comprehen-
sive understanding of these non-SDK interfaces, we parse the official Android
restriction lists to extract SDK and non-SDK interfaces and their restrictions for
the latest three Android versions (12, 13 and 14). To further understand the use
of these interfaces in practice, we analyze 714,616 Android apps collected from
18 sources and their use of non-SDK interfaces across the Android versions 12,
13 and 14. In summary, our contributions are as follows:

– Systematic analysis of misalignment of Veridex results with the official restric-
tion lists. We studied 47,967,468 non-SDK interfaces identified by Veridex in
the analyzed apps across Android versions 12 to 14. Our findings revealed a
significant number of inconsistencies between Veridex’s output and the offi-
cial restriction lists, i.e., 72.13% of used calls were found to be inconsistent
with official information in version 12, 69.95% were found in version 13, and
70.62% in version 14. Among them, we discovered 96 non-SDK interfaces
that were absent from the restriction lists, but reported by Veridex. These
interfaces were linked to core Android functionalities including widget, OS,
and content as well as accessing JDK internal functionalities. The presence of
these non-SDK interfaces poses significant security risks by exposing critical
system components and sensitive operations to unauthorized usage.
We further identified significant discrepancies between interface restrictions
reported by Veridex and the restrictions indicated in the restriction lists. In
version 12, 34.39% showed mismatched restrictions, including 89 interfaces

Evaluating Non-SDK Restrictions in Android 219

with no corresponding restrictions. In version 13, 41.26% of interfaces had
mismatched restrictions with 53 interfaces lacking corresponding restrictions.
Similarly, version 14 displayed a 39.62% mismatch rate, with 87 interfaces
completely unmatched. This pattern highlights challenges in aligning detected
non-SDK interfaces with their documented restrictions, complicating efforts
to ensure secure and compliant application development.
To the best of our knowledge, we are the first to discover the discrepancies in
the official guidance for the non-SDK usage and conduct a systematic study
of the discrepancies between the documented interfaces in the restriction lists
and their actual usage in Android apps as detected by Veridex.

– Large-scale analysis and measurement of non-SDK interfaces present in third-
party apps. Our study examined 714,616 apps and identified the use of non-
SDK interfaces in 85.79% of them. Compared to earlier study by Yang et
al. [21] that investigated the use of non-SDK interfaces right after they were
deployed by Google (i.e., Android 9-11) on a small set of apps, their usage
remains consistently high, i.e., 88% of 66,450 apps [21].

– Improved Veridex tool. We identified and corrected Veridex limitation and
provide the improved version to the community 1.

2 Related Work and Background

Background. To control the use of non-SDK interfaces, Google has introduced
a more formal restriction process and published the restriction lists for each
major version of Android since Android 9 [4]. Each restriction list includes the
SDK and non-SDK interfaces and the corresponding restriction categories. Offi-
cially, the restriction lists include the following categories: 1© Blocklist: indi-
cates interfaces that are inaccessible to third-party developers. 2© Conditionally
blocked (max-target-x/greylist-max-x): interfaces that are accessible by apps tar-
geting an API level up to level x. 3© Unsupported (greylist): unrestricted but
not included in official documentation and are therefore subject to change with-
out notice. Google specifically states that these interfaces will be conditionally
blocked in future Android versions. 4© SDK (whitelist): - documented and sup-
ported interfaces. 5© Test APIs (test-API): interfaces that are used for internal
system testing. These are not open for third-party developers and are effectively
blocked starting in Android 11.

Related Work. The landscape of Android API usage and security has been
thoroughly explored, revealing challenges associated with rapid platform evolu-
tion and the resulting compatibility issues [2, 6, 8,13,20]. Syer et al. [19] high-
lighted the risks associated with platform-dependent code. Both Li et al. [8]
and Linares-Vasquez et al. [11] noted that rapidly changing APIs can cause sev-
eral issues for third-party applications. Liu et al.’s [12] results revealed that the

1 https://github.com/nonsdk/revised veridex.

https://github.com/nonsdk/revised_veridex
https://github.com/nonsdk/revised_veridex
https://github.com/nonsdk/revised_veridex
https://github.com/nonsdk/revised_veridex
https://github.com/nonsdk/revised_veridex
https://github.com/nonsdk/revised_veridex

220 G. Silva et al.

Fig. 1. The flow of the analysis

majority of third-party applications use silently evolving interfaces that lack up-
to-date documentation. Other studies pointed out that this rapid API evolution
make the task of keeping complete and accurate extremely difficult [10]. Cai et
al. [2] and Xia et al. [20] provided insights into the strategies employed by devel-
opers to address runtime incompatibilities that are caused by API evolution.

Non-SDK APIs. Li et al. [9] conducted the first study exploring the use of
interfaces not available for third-party apps before Google introduced interface
restrictions, finding that 5.4% of third-party apps relied on internal API meth-
ods that were inaccessible to developers. The follow-up study by He et al. [7]
discovered 112 vulnerabilities in Android 6 and identified over 25 non-SDK inter-
faces with inconsistent protections in Android 11 and 12. A more comprehensive
analysis although on a small set of 66,450 apps was conducted by Yang et al. [21]
who explored the use and design of non-SDK interfaces, focusing on restriction
mechanisms, usage patterns, and potential for malicious use.

Restrictions. The gaps in app security enforcement have been widely explored
at the Android permission level [3,14,16,18]. Sellwood et al. [17] pointed out that
architecture changes between OS versions result in gaps that allow execution
of malicious apps. Only a few studies have focused on non-SDK API restric-
tions. He et al. [7] examined how developers can bypass these restrictions and
showed that the currently employed countermeasures might not be fully effec-
tive. Yan et al. [21] noted that restrictions are sometimes relaxed in response to
developer feedback, or to incorporate new features into Android. The study by
Barzolevskaia et al. [1] revealed that there are more restrictions found within
the Android source code than what is available in the public documentation,
suggesting a deeper layer of regulatory measures that are not publicly acknowl-
edged.

3 Approach

To systematically identify and measure the discrepancies in the use of non-SDK
calls within the Android ecosystem, we focused our analysis on two layers -
official documentation and practical usage. The flow of our analysis is shown in
Fig. 1. Our analysis fundamentally relies on two key data sources:

1) Official Google restrictions lists. For our analysis, we examined the
SDK and non-SDK interfaces available within the Android platform. These inter-
faces are listed in official restrictions lists with their corresponding assignment

Evaluating Non-SDK Restrictions in Android 221

to the restriction categories. These restrictions lists are intended to serve as a
guideline for third-party developers and outline the official specifications for API
usage within Android applications [4]. We collected restriction lists published for
the three latest Android versions 2 (12, 13, and 14).

2) Android apps. For this analysis, we collected a diverse dataset of Android
applications from various sources to ensure a broad representation of application
behaviour and characteristics. Since the restrictions lists were introduced in 2018,
we focused primarily on datasets from 2020 and beyond. We relied on publicly
accessible collections of benign applications gathered from the Google Play Store
and alternative markets. We also included malicious Android applications from
VirusShare and VirusTotal. Collected apps were checked for uniqueness to ensure
that no two apps were the same. Table 1 gives an overview of the set.

3.1 Data Parsing
Processing Restriction Lists. Google’s restriction lists contain API calls
(SDK and non-SDK interfaces) and their associated restrictions, which indicate
the call’s level of access to the Android platform. Figure 2 provides an example of
the relationship between calls and restrictions. We parsed the restriction lists. To
facilitate our analysis, we extracted calls as well as the restriction(s) associated
with the API call. We divided each API call into caller and callee segments.
The caller segment typically specifies the class or package from which the call
originates. Callee indicates the method or function that is being called (including
any parameters it might use).

Processing Android Apps. To understand the use of calls within third-party
apps, Google provides Veridex, an official static analysis tool that inspects the
code of an app to detect the use of non-SDK interfaces [5]. The tool relies on the
restriction lists to differentiate between SDK calls that third-party developers
are permitted to use and calls that are restricted for third-party apps and non-
SDK interfaces. When Veridex detects a non-SDK interface in an APK and finds
a corresponding match in the restriction list, it logs the occurrence. Veridex also
records the sequence number (log identifier), the mechanism Veridex uses to
detect the non-SDK interfaces, the restriction that binds the API call, and the
detected call. An example of a Veridex entry is shown in Fig. 3.

While using Veridex, we identified several issues. First, to adapt to the fast-
evolving Android restrictions, Veridex is expected to handle restriction lists cor-
responding to the version of Android targeted by the app. We found that Veridex
uses a hardcoded restriction list for Android 12. Second, we observed segmen-
tation faults in instances when the tool attempted to verify the presence of the
non-SDK API calls with restriction ‘max-target-s’ (corresponds to Android 12).
We modified the Veridex source code to address these issues.

We used this improved version of the tool to scan our dataset of 714,616
unique APKs to obtain the used non-SDK interfaces. For our analysis, we

2 At the time of our analysis.

222 G. Silva et al.

excluded 91,699 (12.83%) APKs that showed no presence of non-SDK inter-
faces, 15,448 (2.16%) APKs that produced errors during the Veridex scanning,
and 24 APKs that showed no presence of non-SDK interfaces but also produced
errors during the Veridex scanning. The overview is presented in Table 1. Conse-
quently, our analysis proceeded with the remaining 613,072 APKs (85.79%) for
which Veridex successfully generated logs with at least one non-SDK interface.

Fig. 2. An example of Android interface annotations in Android restrictions list

Fig. 3. Structure of Veridex output

3.2 Inconsistency Analysis

We identify discrepancies between the official Android guidelines for non-SDK
interface use and their actual use in Android apps by comparing the non-SDK
interfaces detected by Veridex to the non-SDK interfaces present in restriction
lists. Since the use of non-SDK interfaces is restricted for third-party developers,
we would expect Veridex to produce empty logs (i.e., Veridex did not detect any
use of non-SDK interfaces). However, previous research has shown that this is
not the case and that third-party developers do indeed make use of non-SDK
interfaces [21]. Thus, we explore the presence of these interfaces as detected by
Veridex, specifically focusing on whether or not the non-SDK interfaces and their
corresponding restrictions align with the official restriction lists.

Since restriction lists differ for each Android version, we perform the com-
parison for each version separately. For each call present in the Veridex output,
we match it to the corresponding interface in the restriction lists. We label the
results of our comparison as follows:

– Full match: the non-SDK interface found in the Veridex log is an exact
match to the non-SDK interface present in the restriction list.

– Partial match: either the caller or callee segments in a Veridex detected
non-SDK interface match either the caller or callee in a non-SDK interface
from the restriction lists.

Evaluating Non-SDK Restrictions in Android 223

Table 1. Summary of APK analysis

Set Collection years Total APKs APKs using non-SDK interfaces Total Non-SDK interfaces from Veridex logs
AndroGalaxy 2017, 2018, 2019 7,462 7,294 (97.75%) 1,045,655
AndroidAPKsFree 2020 1,333 1,300 (97.52%) 216,213
Anzhi 2017, 2020 5,894 5,351 (90.79%) 389,007
APKGod 2020 4,690 4,317 (92.05%) 630,607
APKMaza 2020 111 111 (100.00%) 12,825
APKPure 2020, 2021, 2023 109,216 104,862 (96.01%) 9,954,476
AppsApk 2020 6,146 5,749 (93.54%) 731,974
Appvn 2020 33,986 31,836 (93.67%) 3,727,848
CracksHash 2021, 2022 3,486 3,473 (99.63%) 540,094
F-droid 2020 7,073 5,678 (80.28%) 384,812
Googleplay 2020, 2023 5,468 5,227 (95.59%) 670,024
Mob.org 2020 1,147 1,128 (98.34%) 154,621
1Mobile 2020 1,370 1,346 (98.25%) 151,566
slideME 2020 18,052 18,049 (99.98%) 754,699
Uptodown 2020 59,717 55,999 (93.77%) 7,472,493
VirusShare 2012- 2018, 2020–2022 440,106 360,173 (81.84%) 20,720,264
VirusTotal 2020, 2021 8,160 82 (1.00%) 1,253
Xiaomi 2020 1,199 1,097 (91.49%) 120,544
Total - 714,616 613,072 (85.79%) 47,967,468

– No match: an API call detected by Veridex tool does not fit either the ‘full
match’ or ‘partial match’ categories. Non-SDK interfaces that fall under the
‘no match’ category are particularly significant as they may indicate either
undocumented non-SDK interface usage or discrepancies in the logging or
detection methods of the Veridex tool.

We refer to the list of identified discrepancies as API calls inconsistencies.
Similarly, we analyze the restrictions of the ‘full match’ calls that are present

in both the Veridex logs and the restriction lists. We compared restriction cate-
gories of calls as they are labelled by the Veridex tool and defined by Google in
the documentation. We expect the level of restrictions placed on API calls to be
equivalent, i.e., API calls noted by Google as restrictive should align with infor-
mation present in the official restriction lists. As with our analysis of API calls,
we identify instances contradicting this assumption and categorize the results as
follows:

– Full Match: the Veridex API call and the call present in the restriction list
have identical restrictions.

– Partial match: the Veridex API call has at least one restriction in com-
mon with the corresponding API call in the restriction list. For example,
if a Veridex API call is labelled with the restrictions ‘unsupported, public’,
and the corresponding API in the restriction list is labelled with any of the
combinations such as ‘unsupported’, ‘unsupported, public’ or ‘unsupported,
public, lo-prio, there is a partial match due to the presence of the restriction
‘unsupported’ that is associated with both calls.

– No match: the restrictions associated with an API call detected by Veridex
has no overlap with the restrictions present in the restriction list for that API
call.

224 G. Silva et al.

To verify discrepancies, we then group and manually inspect the instances in
which the restriction information does not align.

We refer to the list of identified discrepancies as Restriction inconsistencies.

4 Summary of APK Analysis

Table 2. Restrictions of Android interfaces

Restriction combinations Restriction list Version 12 Restriction list Version 13 Restriction list Version 14
blocked 247,088 280,562 337,182
lo-prio,max-target-o 97,245 95,198 92,806
public-api,sdk,system-api,test-api 66,670 72,326 79,105
core-platform-api,public-api,sdk,system-api,test-api 42,052 44,338 48,180
unsupported 20,497 20,353 20,245
sdk,system-api,test-api 13,041 15,465 17,929
max-target-r 3,010 2,949 2,884
blocked,test-api 1,432 1,577 2,005
sdk 1,555 1,558 1,660
max-target-q 810 810 804
max-target-p 760 754 753
removed,unsupported 420 420 423
blocked,core-platform-api 378 375 378
core-platform-api,lo-prio,max-target-o 190 177 177
lo-prio,max-target-o,test-api 158 154 155
core-platform-api,unsupported 141 141 141
test-api,unsupported 89 90 98
lo-prio,max-target-r 52 52 50
core-platform-api,public-api,sdk 50 51 51
max-target-r,test-api 36 34 37
max-target-o 14 14 14
core-platform-api,max-target-q 12 12 12
core-platform-api,max-target-r 8 8 8
max-target-s 0 4 4
public-api,sdk 2 2 2
core-platform-api,max-target-p 2 2 2
max-target-q,test-api 1 1 1
Total 495,713 537,427 605,106

Restriction Lists Analysis. To gather more insight into restrictions of Android
interfaces, we analyzed API calls present in the restriction lists for the analyzed
Android versions. Our analysis presented in Table 2 shows that the categorization
used by Android is more complex. Officially, Android lists only 5 restriction
categories. Our analysis showed that there are additional categories that are
excluded from the official documentation but present in the restriction lists.
These categories are ‘core-platform-api’, ‘system-api’, ‘removed’, and ‘lo-prio’.
While their restrictions are unclear, they all appear in conjunction with other
documented categories.

In addition to individual categories, a significant portion of interfaces were
labelled using restriction combinations, many of which are contradictory. For

Evaluating Non-SDK Restrictions in Android 225

instance, 24% of interfaces in each versions are public-api, sdk, system-api, test-
api ’sdk,system-api, test-api’, and core-platform-api, public-api, sdk, system-api,
test-api combinations. Restriction categories public and sdk indicate that these
interfaces are publicly accessible while test-api suggests that the interfaces are
intended only for internal system testing (i.e., not for third-party apps).

Similarly, the combinations ‘max-target-(q and r), test-api’ also present con-
tradictory labelling. Conditionally blocked, these interfaces are publicly open
to third-party apps targeting Android 10 and 11, respectively, and at the same
time, not intended for third-party developers (‘test-api’).

Veridex Analysis. In our dataset of 714,616 Android applications, Veridex iden-
tified the use of non-SDK interfaces in 613,072 APKs which is 85.79% of all
analyzed apps. We documented a total of 47,967,468 non-SDK interfaces within
these APKs, as detailed in Table 1. This prevalence of non-SDK interfaces in
third-party apps is particularly puzzling given Google’s efforts to restrict their
usage. Google introduced restrictions for non-SDK interfaces, aiming to decline
their use in applications to enhance platform security and maintain API con-
sistency. We expected to see a decline in the presence of non-SDK interfaces in
applications developed post-2018 (when restrictions were officially introduced).

Our examination revealed that more than 80% of the APKs in each dataset
contained non-SDK interfaces. Alarmingly, within the subset of 5,468 APKs
sourced from the Google Play Store, 5,227 APKs (95.59%) were found to contain
non-SDK interfaces. This finding is unexpected and raises concerns about the
effectiveness of Google’s measures to discourage the use of non-SDK interfaces.
Despite the heavy monitoring and regulation by Google, a significant number of
applications in the official store still use these restricted interfaces, suggesting a
gap in enforcement and developer noncompliance with the intended guidelines.

Table 3. Overview of API calls inconsistency

Set Total APKs Total calls Full match calls Partial match calls No match calls Total
mismatched
calls

caller match callee match
v12 608,954 15,688,459 4,372,357 (27.87%) 11,316,039 (72.13%) 0 (0.00%) 63 (0.00%) 11,316,102

(72.13%)

v13 612,556 16,188,834 4,864,281 (30.05%) 11,324,386 (69.95%) 35 (0.00%) 132 (0.00%) 11,324,553
(69.95%)

v14 610,911 16,090,175 4,727,085 (29.38%) 11,361,923 (70.61%) 833 (0.01%) 334 (0.00%) 11,363,090
(70.62%)

5 Inconsistency Analysis

5.1 API Calls Inconsistencies

Across Android versions 12 to 14, we analyzed a total of 47,967,468 non-SDK
interfaces detected by Veridex across 613,072 apps. The details of the API call
inconsistency analysis are presented in Table 3.

226 G. Silva et al.

Theoretically, all API calls detected by Veridex in third-party apps should
be present in the official documentation, but this is not the case. The number
of API calls fully matching the official restriction lists remained around 30%
across the three versions, i.e., 27.87% in version 12, 30.05% in version 13, and
29.38% in version 14. Hence, a significant portion of calls used by apps did not
match official documentation. We observed 72.13% (11,316,102) non-SDK calls
with mismatches (partial and no match) for version 12, 69.95%(11,324,553) in
version 13, and 70.62% (11,363,090) in version 14.

Among them, the most worrisome are the not matching instances. For version
12, we found 63 interfaces used in the third-party Android apps that did not have
any corresponding entries in the restriction list. The number of interfaces with
no corresponding matches increased across subsequent versions: 132 interfaces in
version 13, and 334 interfaces in version 14. The presence of non-SDK API calls
that are neither documented nor restricted is puzzling. This contradicts Google’s
guidelines which state, “To avoid crashes and unexpected behavior, apps should
only use the officially documented parts of the classes in the SDK” [4].

We manually analyzed the ‘no match’ non-SDK interfaces. In version 12, the
interface ‘Ljdk/internal/misc/Unsafe’ was flagged 62 times as a ‘no match’. This
particular interface, known for providing low-level and unsafe operations within
Java, allows for memory manipulation and the execution of arbitrary code [15].
Despite its critical nature, this interface remains undocumented in the official
lists, and Veridex merely notes its presence without associating any specific
restrictions. These instances are particularly alarming as they clearly indicate
that third-party developers are well aware of these undocumented interfaces
and use them. In subsequent versions 13 and 14 (Table 4), we identified the
top five occurring ‘no match’ interfaces. These interfaces impact core system
functionalities and are similarly logged by Veridex without restrictions.

Table 4. Top five ‘No match’ non-SDK interface occurrences

Android version Non-SDK interfaces Number of occurrences
v13 Lcom/android/internal/widget/FloatingToolbar$FloatingToolbarPopup;->mParent 5

Lcom/android/internal/widget/FloatingToolbar;->mPopup 5
Lcom/android/internal/widget/FloatingToolbar;->mWidthChanged 5
Lcom/android/internal/content/PackageHelper;->APP INSTALL EXTERNAL 3
Lcom/android/internal/os/BatterySipper;->sumPower 2

v14 Lcom/android/internal/os/BatteryStatsImpl;->computeBatteryRealtime 12
Lcom/android/internal/os/BatteryStatsImpl;->CREATOR 11
Lcom/android/internal/os/BatteryStatsImpl$Uid;->getUid 11
Lcom/android/internal/os/BatteryStatsImpl;->getUidStats 11
Lcom/android/internal/os/BatteryStatsImpl;->readLocked 11

During our analysis, we identified a significant number of partial matches, i.e.,
the calls matched only on the caller or callee side, which highlights inconsistencies
in API interactions. We flagged 11,316,039 (72.13%) non-SDK interfaces with
caller matches for version 12. Versions 13 and 14 had 11,324,386 (69.95%) and
11,361,923 (70.61%) caller matches, respectively. In contrast, the number of calls

Evaluating Non-SDK Restrictions in Android 227

with matching callees was much lower: 0 matches for version 12, 35 for version
13, and 833 for version 14. Partial matches suggest a gap in the documentation,
or inconsistent enforcement of restrictions in which certain parts of the API calls
are acknowledged but not fully regulated through restrictions. Partial matches
cause incomplete enforcement of restrictions, which complicates the efforts of
security teams to comprehensively secure API usage. Such inconsistencies may
expose the system to potential security issues where certain aspects of the API
calls are controlled, but other aspects remain unrestricted and exploitable.

Table 5. Restriction inconsistencies of fully matched non-SDK calls

Set APKs Total calls Full match Mismatches
Partial match No match Total

Android v12 481,358 4,372,357 2,868,595 (65.61%) 1,503,673 (34.39%) 89 (0.00%) 1,503,762 (34.39%)
Android v13 491,098 4,864,281 2,857,197 (58.74%) 2,007,031 (41.26%) 53 (0.00%) 2,007,084 (41.26%)
Android v14 487,881 4,727,085 2,854,440 (60.38%) 1,872,558 (39.61%) 87 (0.00%) 1,872,645 (39.62%)

Collectively, our findings demonstrate the inconsistencies in non-SDK inter-
face enforcement and documentation. Over 69% of the Veridex logs that we ana-
lyzed showed mismatched non-SDK interfaces compared to the official restriction
lists. This suggests that many of the restrictions associated with these non-SDK
interfaces may not be enforced as stated by Google and are lacking proper doc-
umentation.

5.2 Restriction Inconsistencies

To explore restriction inconsistencies, we analyzed only fully matching non-SDK
interfaces across three Android versions. The summary is presented in Table 5.

Calls with ‘Full Match’ Restrictions. Similarly to non-SDK calls, we expected
the restrictions indicated by Veridex to match information present in the official
restricted lists. Surprisingly, this was not the case. In version 12, 65.61% of calls
had restrictions fully matching the corresponding restrictions in official lists,
58.74% in version 13, and 60.38% in version 14.

Calls with ‘Partial Match’ Restrictions. Out of 4,372,357 ‘full match’ non-SDK
interfaces, 34.39% of calls had only partially matching restrictions for version 12.
In versions 13 and 14, these numbers were slightly higher (41.26% and 39.61%,
respectively). Approximately one-third of the identical calls had at least one (but
not all) restriction category the same in both the official restriction lists and the
corresponding Veridex logs. The occurrences are listed in Table 6.

The significant existence of partial matches raises substantial security con-
cerns. It suggests that, while the non-SDK interfaces are recognized and
restricted to some extent, their full restrictions are not known in advance to

228 G. Silva et al.

Table 6. ‘Partial match’ restriction inconsistencies

Android version Veridex Restriction list Occurrences
v12 unsupported removed,unsupported 1,040,092

unsupported public-api,sdk,system-api,test-api 318,840
max-target-o lo-prio,max-target-o 143,639
max-target-o,core-platform-api core-platform-api,lo-prio,max-target-o 661
max-target-o,test-api lo-prio,max-target-o,test-api 320
max-target-r lo-prio,max-target-r 90
unsupported,test-api unsupported 14
max-target-o,test-api lo-prio,max-target-o 12
max-target-o lo-prio,max-target-o,test-api 2
unsupported sdk,system-api,test-api 2
blocked,test-api blocked 1
Total - 1,503,673

v13 unsupported removed,unsupported 1,861,259
max-target-o lo-prio,max-target-o 142,428
unsupported public-api,sdk,system-api,test-api 2,073
max-target-o,core-platform-api core-platform-api,lo-prio,max-target-o 657
max-target-o,test-api lo-prio,max-target-o,test-api 371
max-target-r lo-prio,max-target-r 90
unsupported core-platform-api,public-api,sdk,system-api,test-api 79
unsupported,test-api unsupported 32
unsupported sdk,system-api,test-api 22
max-target-o lo-prio,max-target-o,test-api 17
max-target-o,test-api lo-prio,max-target-o 2
unsupported,test-api public-api,sdk,system-api,test-api 1
Total - 2,007,031

v14 unsupported removed,unsupported 1,730,161
max-target-o lo-prio,max-target-o 141,114
max-target-o,core-platform-api core-platform-api,lo-prio,max-target-o 657
max-target-o,test-api lo-prio,max-target-o,test-api 388
max-target-r lo-prio,max-target-r 90
unsupported core-platform-api,public-api,sdk,system-api,test-api 86
unsupported test-api,unsupported 27
unsupported sdk,system-api,test-api 19
unsupported public-api,sdk,system-api,test-api 15
blocked blocked,test-api 1
Total - 1,872,558

developers. This can potentially lead to contradictions during the execution
of the restrictions. For example, among the partially matched restrictions, we
identified multiple non-SDK interfaces across the three versions where Veridex
marked the calls as ‘unsupported’ while the restriction list specified these calls
under various combinations that include ‘public-api’ and ‘sdk’. These labels indi-
cate that these interfaces are officially documented and open for use by third-
party developers, i.e., technically these are SDK-interfaces. Yet Veridex sees
them as unreliable interfaces that can change at any time.

Aside from this issue, the presence of contradictory restriction combinations
causes further confusion about the actual restrictions that are being enforced for

Evaluating Non-SDK Restrictions in Android 229

an interface. Although this issue was noted by previous studies [1,21], our anal-
ysis further emphasizes the extent of this problem. The restriction combination
‘public-api,sdk,system-api,test-api’ is one of the examples of this contradiction,
while ‘sdk’ points to the official availability of the interfaces, ‘test-api’ says that
interface is reserved for internal system testing and hence is not available for
third-party apps. Resolving these cases through Veridex is not always possible
as the corresponding Veridex output may also contradict the official guidance.

Table 7. ‘No match’ restriction inconsistencies

Android version Veridex Restriction list Occurrences
v12 blocked unsupported 71

blocked max-target-r 16
blocked max-target-p 2
Total - 89

v13 blocked unsupported 37
max-target-r blocked 4
unsupported blocked 4
max-target-p blocked 2
max-target-p public-api,sdk,system-api,test-api 2
unsupported max-target-s 2
max-target-o public-api,sdk,system-api,test-api 1
max-target-r public-api,sdk,system-api,test-api 1
Total - 53

v14 unsupported blocked 75
max-target-p public-api,sdk,system-api,test-api 3
max-target-r blocked 3
max-target-r public-api,sdk,system-api,test-api 3
unsupported max-target-s 2
max-target-o public-api,sdk,system-api,test-api 1
Total - 87

Calls with ‘No match’ restrictions We observed that for a small number of calls
Veridex reported differences from official documentation restrictions. Specifically,
89 calls had not-matching restrictions in version 12, 53 calls in version 13, and
87 in version 14. These discrepancies in restrictions are presented in Table 7.

The majority of these cases (187) include blocked instances on one side and
unsupported instances on the other. These combinations reveal some obvious
contradictions between Veridex’s findings and the official documentation with
respect to how the same non-SDK interfaces should be restricted. For instance,

230 G. Silva et al.

we observed occurrences of calls labelled as ‘blocked’ in the official documenta-
tion, yet listed as ‘unsupported’ by Veridex (4 occurrences in version 13 and 75
occurrences in version 14), and vice versa, listed as ‘unsupported’ by restriction
list and seen as ‘blocked’ by Veridex (71 occurrences in Android version 12).

In theory, these instances highlight critical gaps in the Android official docu-
mentation. In practice, they convey a false sense of available calls when, in fact,
they will be blocked by the operating system. A similar false sense of availability
is conveyed by conditionally blocked calls, which Veridex lists as ‘max-target-x ’
where x indicates the target API level after which the app can no longer access
these non-SDK interfaces. Veridex detected 9 non-SDK interfaces as condition-
ally blocked while restriction lists state that these calls are blocked regardless of
an app’s target API level. Such inconsistencies raise concerns regarding potential
misclassifications, undocumented API usage, or errors in restriction mapping.

Other discrepancies involve 11 cases of non-SDK interfaces labelled by
Veridex as ‘max-target-x ’ while the corresponding entries in the restriction lists
indicate that these interfaces are ‘public-api, sdk, system-api, test-api’, implying
that they can be used by developers. Although, we have to acknowledge that
even the official restriction listed as a combination of public-api, sdk, system-
api is confusing and does not give a clear message about the availability of
the calls. To assess the severity of these contradictions, we manually analyzed
the affected interfaces, observing that non-SDK interfaces exist within critical
Android packages such as ‘bluetooth’, ‘location’, ‘telephony’, ‘os’, ‘net’, ‘view’,
‘text’, and ‘app’.

These fluctuations in restriction labels for the same non-SDK interface pose
significant security risks. For developers, these inconsistencies can lead to confu-
sion. If an interface is deemed ‘blocked’ in one instance, a developer might avoid
using it under the belief that it cannot be used. However, if the same interface is
classified as ‘unsupported’, it might suggest that the interface can be used with-
out official support. These contradictions, or misclassifications, might encourage
developers to use risky interfaces without realizing the potential threats, due to
inaccurate restriction information.

6 Case Study

During our analysis, we identified 159 unique APKs across Android versions 12,
13, and 14 that used non-SDK interfaces (as identified by Veridex) not present in
any corresponding restriction lists. Specifically, we observed 63 APKs in version
12, 19 in version 13, and 80 in version 14.

For manual investigation, we decided to focus on apps that use
‘Lcom/android/internal/os/BatteryStatsImpl’ interface. This is an internal API
meant to be used by system apps only. The interface requires the BATTERY STATS
permission, which is only available to system apps. Hence, the use of this interface
by any third-party apps is prohibited and should not be possible. We randomly
selected 15 APKs using this interface. Among them, 3 were from Androgalaxy,
1 from apkgod, 7 from apkpure, and 4 from appvn. There were no apps with ‘no
match’ calls from the Google Play Store.

Evaluating Non-SDK Restrictions in Android 231

These 15 APKs were installed on Android smartphones running versions 12
(Samsung SM G990W2), 13 (Google Pixel 7 Pro), and 14 (Google Pixel 8). Out
of them, 8 APKs were successfully installed across all three versions, 2 only on
devices with Android 14, 3 on Android 12 and 13, 1 only on Android 12, and
1 failed to install on any version. We imported each app into Android Studio
(Version 2024.1.2 Canary 8) and installed on the three smartphones connected
to Android Studio through USB debugging. Apps were installed one at a time
and the phone was rebooted with a fresh image between apps. For each app, we
monitored the logs generated through Android Debug Bridge (adb), a command-
line tool that enabled us to observe the logs generated by the smartphone and
the installed app. To trigger app functionality, we manually browsed each app
for several minutes.

Our findings revealed several critical points. First, the accessed battery infor-
mation was correctly displayed by all 14 apps. Second, the adb logcat logs indi-
cated that a system-level communication was triggered to retrieve battery statis-
tics through ‘BatteryStatsImpl’ calls. In all 14 APKs, the ‘BatteryStatsImpl’
calls originated from the system server (a system process spawned by zygote),
and not under the PID of the running app as expected. This behaviour was con-
sistent across all analyzed APKs. In Android 12, adb also displayed a warning
about using this interface, which was not present in Android 13 and 14. The
calls, although not officially present or allowed for use by third-party apps as
correctly indicated by Veridex, were executed successfully. Further investigation
of Android’s platform code revealed that the Android OS broadcasts battery
statistics that are accessed by system apps. It appears that there are no addi-
tional checks performed by the OS to prevent third-party apps from accessing
battery information, which is likely because this interface is not available to such
apps.

This finding is concerning as it reveals a significant security oversight:
although these APKs functioned as expected in providing battery statistics, they
did so by bypassing Android’s security mechanisms. This scenario highlights a
critical security gap within the Android ecosystem where non-SDK interfaces
that are not officially documented are still being accessed, potentially exposing
sensitive device data. Theoretically, such communications should be blocked by
the system to prevent exposure of sensitive data, but our observations confirm
that these APKs could fetch battery details and display them to the user without
any system-level restrictions.

7 Discussion

In our analysis, we uncovered several key aspects:
1© Widespread violation of restrictions by third-party developers. The widespread
use of non-SDK interfaces in third-party apps raises significant security concerns.
Of the 613,072 APKs that use non-SDK interfaces, we found a core group of
477,984 APKs using non-SDK interfaces and are present in all three Android
versions. Non-SDK interfaces should not be present since their inclusion contra-
dicts Google’s guidelines on non-SDK API usage. Even in the Google Play Store

232 G. Silva et al.

where security measures are expected to be stringent, the number of APKs with
non-SDK interfaces is high: 95.13% (4,963 APKs) in version 12, 98.34% (5,139
APKs) in version 13, and 98.37% (5,141 APKs) in version 14. Widespread usage
of non-SDK interfaces, even when matching with restriction lists, highlights gaps
in Android’s enforcement of its security policies.
2© Significant misalignment between the non-SDK interfaces detected by Veridex
and the documented interfaces in the official restriction lists. There were a large
number of inconsistencies between Veridex’s reports and the restriction lists. For
example, 72.13% of the used interfaces reported by Veridex were either partially
matched or completely missing from the corresponding restriction list in version
12 (69.95% and 70.62% of interfaces for versions 13 and 14, respectively).
3© The use of undocumented non-SDK interfaces absent from restriction lists.
We discovered a small number of apps that used interfaces not present in any
official restrictions lists, i.e., 63 APKs in version 12, 19 APKs in version 13, and
80 APKs in version 14. Overall, we found 96 unique non-SDK interfaces used by
third-party apps, but absent from the restrictions lists.
4© Absent non-SDK interfaces are successfully used by third-party apps. We man-
ually executed and analyzed 15 apps containing undocumented non-SDK inter-
faces. Of these, 14 apps were successfully installed and executed on the phones,
and they retrieved information through non-SDK interfaces. These instances
indicate gaps in Android’s security since APKs use interfaces that are not in the
restriction lists, opening up avenues for severe security exploitation.
5© Mismatching restrictions for identical non-SDK interfaces. There were signifi-
cant discrepancies between the non-SDK interfaces detected by Veridex and their
corresponding entries in the official restriction lists. Restrictions of 34.39% non-
SDK interfaces reported by Veridex in version 12 were either a ‘partial match’
or ‘no match’ with their corresponding restrictions in the restriction lists. The
number of mismatches increased in version 13 (41.26%) and version 14 (39.61%).
The quality of official Android documentation is not improving over time, and
critical guidelines for access control are becoming more confusing.
6© Conflicting documentation. A significant portion of interfaces are labelled
with restrictions that are not in the documentation (e.g., ‘lo-prio’), or labelled
with contradictory restriction combinations (e.g., ‘core-platform-api, public-api,
sdk, system-api, test-api’). Our results align with previous research finding that
Android documentation is often incomplete, irrelevant, and inaccurate [1,12].
7© Inadequate detection of non-SDK interfaces. Google offers Veridex and adb
as reliable tools for identifying the use of non-SDK interfaces [4]. Our case study
revealed significant discrepancies between Veridex’s results and adb’s logcat func-
tionalities. This clearly indicates that, despite Google’s guidance, these tools are
inadequate and not equivalent in detection of non-SDK use in apps. Our observa-
tions underscore significant challenges in Android’s current security framework’s
capability to accurately detect and report non-SDK interface usage.

Evaluating Non-SDK Restrictions in Android 233

8 Conclusion

In this study, we conducted a systematic analysis of non-SDK interfaces, focus-
ing specifically on the discrepancies between the official documentation in the
restriction lists and the practical usage as detected by the Veridex tool. Our
investigation into the existence of non-SDK interfaces across Android 12, 13, and
14 revealed significant inconsistencies in how these interfaces are documented in
restriction lists, and how they are actually used within applications as reported
by Veridex. The severity of the issues we uncovered ranges from minor misclassi-
fication, which could lead to performance inefficiencies, to critical security issues.
This underscores the urgent need for more rigorous and consistent documenta-
tion and stricter enforcement of API usage policies.

References

1. Barzolevskaia, A., Branca, E., Stakhanova, N.: Measuring and characterizing
(mis)compliance of the android permission system. IEEE Trans. Software Eng.
01, 1–23 (2024)

2. Cai, H., Zhang, Z., Li, L., Fu, X.: A large-scale study of application incompatibil-
ities in android. In: ISSTA 2019, pp. 216–227. ACM, New York, NY, USA (2019)

3. Calciati, P., Kuznetsov, K., Gorla, A., Zeller, A.: Automatically granted permis-
sions in android apps: an empirical study on their prevalence and on the potential
threats for privacy. In: MSR 2020, pp. 114–124 (2020)

4. Google: Restrictions on non-sdk interfaces. https://developer.android.com/guide/
app-compatibility/restrictions-non-sdk-interfaces

5. Google: Veridex. https://android.googlesource.com/platform/prebuilts/runtime/
+archive/main/appcompat.tar.gz

6. He, D., Li, L., Wang, L., Zheng, H., Li, G., Xue, J.: Understanding and detecting
evolution-induced compatibility issues in android apps. In: ASE 2018, pp. 167–177
(2018)

7. He, Y., et al.: A systematic study of android non-SDK (hidden) service API secu-
rity. IEEE Trans. Dependable Secur. Comput. 20(2), 1609–1623 (2023)

8. Li, L., Bissyandé, T.F., Wang, H., Klein, J.: CiD: automating the detection of
API-related compatibility issues in Android apps. In: ISSTA 2018, pp. 153–163.
ACM, New York, NY, USA (2018)

9. Li, L., Bissyandé, T.F., Le Traon, Y., Klein, J.: Accessing inaccessible android
APIs: an empirical study. In: ICSME 2016, pp. 411–422 (2016)

10. Li, L., Gao, J., Bissyandé, T.F., Ma, L., Xia, X., Klein, J.: Characterising depre-
cated android APIs. Empir. Softw. Eng. 25, 2058–2098 (2020)

11. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R.,
Poshyvanyk, D.: API change and fault proneness: a threat to the success of android
apps. In: FSE 2013, pp. 477–487. ACM, New York, NY, USA (2013)

12. Liu, P., Li, L., Yan, Y., Fazzini, M., Grundy, J.: Identifying and characterizing
silently-evolved methods in the android API. In: ICSE-SEIP 2021, pp. 308–317
(2021)

13. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption
in the android ecosystem. In: ICSM 2013, pp. 70–79 (2013)

14. Oishwee, S.J., Codabux, Z., Stakhanova, N.: Decoding android permissions: a study
of developer challenges and solutions on stack overflow. In: ESEM 2024 (2024)

https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz
https://android.googlesource.com/platform/prebuilts/runtime/+archive/main/appcompat.tar.gz

234 G. Silva et al.

15. Oracle: The unsafe class: unsafe at any speed. https://blogs.oracle.com/
javamagazine/post/the-unsafe-class-unsafe-at-any-speed

16. Scoccia, G.L., Peruma, A., Pujols, V., Christians, B., Krutz, D.E.: An empirical
history of permission requests and mistakes in open source android apps. In: MSR
2019, pp. 597–601 (2019)

17. Sellwood, J., Crampton, J.: Sleeping android: the danger of dormant permissions.
In: SPSM 2013, pp. 55–66 (2013)

18. Shao, Y., Chen, Q.A., Mao, Z.M., Ott, J., Qian, Z.: Kratos: discovering inconsistent
security policy enforcement in the android framework. In: NDSS 2016 (2016)

19. Syer, M.D., Nagappan, M., Adams, B., Hassan, A.E.: Studying the relationship
between source code quality and mobile platform dependence. Softw. Qual. J. 23,
485–508 (2015)

20. Xia, H., et al.: How android developers handle evolution-induced API compatibility
issues: a large-scale study. In: ICSE 2020, pp. 886–898. ACM, New York, NY, USA
(2020)

21. Yang, S., Li, R., Chen, J., Diao, W., Guo, S.: Demystifying android non-SDK APIs:
measurement and understanding. In: ICSE 2022, pp. 647–658 (2022)

https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed

	A Systematic Evaluation of Non-SDK Interface Restrictions in Android: Bridging the Gap Between Guidelines and Practice
	1 Introduction
	2 Related Work and Background
	3 Approach
	3.1 Data Parsing
	3.2 Inconsistency Analysis

	4 Summary of APK Analysis
	5 Inconsistency Analysis
	5.1 API Calls Inconsistencies
	5.2 Restriction Inconsistencies

	6 Case Study
	7 Discussion
	8 Conclusion
	References

