
Measuring code reuse in Android apps
Hugo Gonzalez and Natalia Stakhanova and Ali A. Ghorbani

Faculty of Computer Science, University of New Brunswick
hugo.gonzalez,natalia,ghorbani@unb.ca

Abstract—The appearance of the Android platform and its
popularity has resulted in a sharp rise in the number of reported
vulnerabilities and consequently in the number of mobile threats.
Leveraging openness of Android app markets and the lack of
security testing, malware authors commonly plagiarize Android
applications through code reuse, boosting the amount of malware
on the markets and consequently the infection rate. In the
last few years the number of studies focused on detection of
mobile app code reuse has drastically increased. Ranging from
lightweight detection of suspicious signs to more sophisticated and
computationally expensive methods assessing apps’ similarity, the
studies treated the presence of code reuse as a sign of plagiarized
apps and maliciousness.

In this work, we revisit this assumption and investigate
code reuse in legitimate and malicious mobile apps. The main
questions that this study aims to answer are what it is that is
being reused, what we can learn from this reuse and consequently
how we can use this knowledge. To answer these questions
we measure code uniqueness and identify common components
originating from third-party sources. We further analyze and
correlate reused code extracted from over 60,000 apps from ten
markets around the world and commonly used app repositories.
As our analysis shows, understanding code reuse can shed some
light on app origin and evolution.

Keywords: Android, code reuse

I. INTRODUCTION

The appearance of Android platform and its popularity has
resulted in a sharp rise in the number of reported vulnerabili-
ties and consequently in the number of threats. According to
Kaspersky’s report, the number of mobile malware targeting
the Android platform tripled in 2013, reaching 98.1% of all
mobile malware [5]. In 2014, Android malware continued its
unprecedented growth reaching the 600% increase.

The further analysis of this behavior shed light into this
phenomenon [26], [9]. Attributing this increase to the lack
of comprehensive security protection on the Android plat-
form, the studies emphasized the ease of applications’ reverse
engineering that allows malware authors to rapidly produce
apps reusing legitimate code and repackaging it with added
malicious functionality. Quickly becoming a popular vehicle
for malware propagation through Android markets, repackaged
apps are overwhelming markets. For example, the official
GooglePlay market was reported to host 2% of repackaged
malware, while on several unofficial markets this number is
reaching 50% [9]. Such popularity of repacking has drawn
significant research attention, and a number of studies have
emerged focused especifically on the detection of app repack-
aging [7], [25], [24], [22], [15] and methods to detect tools to
perform repackage [10].

In spite of variability in complexity and depth of analysis, all
these studies exhibit similar characteristics. Focusing on mal-
ware detection, these works rely on the underlying assumption
that repackaging is associated with malicious functionality. In
other words, measuring code similarities between apps can
indicate code reuse and hence potential repackaging. This
creates several challenges: First, discovered code similarity
(code reuse) might in fact be attributed to common libraries
that are meant to be shared and thus should be excluded
from analysis and subsequent detection. Second, while the
large percentage of malware apps are repackaged, there is a
significant amount of non-repackaged malware. This practice
is also common among legitimate apps that may be repackaged
with different resource files customized to local markets, or
with advertisements to bring additional profit to app owners.
Finally, code may exhibit similarity due to reasons independent
of repackaging such as code evolution, or the same origin or
developer. Thus building defenses based on repackaging signs,
i.e., similarity of code, without a proper understanding of the
nature of this similarity, i.e., code being reused, introduces
bias into detection and limits the approach’s efficiency.

In this work, we investigate code reuse in legitimate and
malicious mobile apps in Android marketplaces. In particular,
this study aims to shed light on several questions: What type
of code is being reused? What is the difference between reused
code in legitimate and malware apps? How much of this
malicious reused code could be identifiable? and finally What
else could we learn from the reused code?

Answering these questions will allow us to better understand
the specifics of code shared among mobile applications and
will give us leverage in developing better, more efficient and
accurate malware detection.

To this end, we developed a system called CodeCheck
to measure the amount of shared code. Specifically, given
an app, CodeCheck extracts the .dex file and breaks it
into smaller components corresponding to its structure (e.g.,
classes, methods, strings). To measure uniqueness of compo-
nents CodeCheck converts their opcodes into hash represen-
tations. These representations are then further analyzed and
correlated to reveal common code and components originating
from third-party sources.

We use CodeCheck to study ten Android markets world-
wide including official Google Play and nine third-party
marketplaces. We also analyze a large set of over 45 000
Android malware apps identified as botnet malware, samples
from VirusTotal stream and well known datasets employed
in previous studies: Android Malware Genome Project [26],

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

and Drebin [4]. Through this analysis we created a database
of common code components shared among the majority of
Android apps. Our analysis shows that approximately 50%
of all analyzed code is common, and despite the common
beliefs, the legitimate mobile apps feature more code reuse
that malicious apps.

II. RELATED WORK

The past decade has seen extensive research in the area
of mobile security. A broad study looking at a variety of
mobile technologies (e.g., GSM, Bluetooth), their vulnerabili-
ties, attacks, and the corresponding detection approaches was
conducted by Polla et al. [16]. More focused studies surveying
characteristics of mobile malware were offered by Alzahrani
et al. [3], Felt et al. [8] and Zhou et al. [26].

With the recent burst of research interest in the area of
Android device security, there have been a number of general
studies offering methods for malicious app detection. These
methods can be broadly divided into those focused on the
detection prior to app installation (e.g., market analysis) and
those that monitor app behavior directly on a mobile device.
Among the studies in the first group are RiskRanker [12],
DroidRanger [27], DroidScope [21], that dynamically monitor
mobile apps behavior in an isolated environment collecting
detailed information that might indicate maliciousness of a
sample. Similarly, DroidMat [20] and DroidAPIMiner [2] look
at the identification of malicious apps using machine learning
techniques. Since these techniques are computationally expen-
sive for a resource-constraint environment of a mobile plat-
form, they are mostly intended for offline detection. Among
studies that focus on malware detection on a mobile device
directly is Drebin [4]. This approach employs static analysis
in combinat1ion with machine learning to detect suspicious
patterns in app behavior.

With a recent wave of repackaged applications, a number of
studies looked at the problem of mobile apps similarity. The
majority of the existing methods look at the content of .dex
files for app comparison. Juxtapp [13] evaluates code similar-
ity based k-grams opcodes extracted from selected packages of
the disassembled .dex file. The generated k-grams are hashed
before they undergo a clustering procedure that groups sim-
ilar apps together. Similarly, DroidMOSS [25] evaluates app
similarity based of fuzzy hashes constructed based on a series
of opcodes. DroidKin [11] detects unique apps analyzing the
similarity of opcodes and metadata of apps. ViewDroid [22]
leverages user interface-based birthmarks for detecting app
repackaging on the Android platform. Several methods were
developed to fingerprint mobile apps to facilitate the detec-
tion. For example, AnDarwin [6], DNADroid [7], and Pig-
gyApp [24] employ Program Dependance Graphs (PDG) that
represent dependencies between code statements/packages.
Potharaju et al. [17] computes fingerprints using Abstract Syn-
tax Tree (AST). In traditional malware omain, BitShred [14]
also looked at similarity of apps. Aiming to increase the speed
of analysis, BitShred offered a scalable comparison of malware

Fig. 1. The structure of a .dex file

features to determine similarity among samples of different
families.

The main focus of these tools is the detection of similar
apps. Such similarity is the first indication of potential app
plagiarism or repackaging. Our work is complementary to all
of these approaches, aiming to understand the nature of code
that is being reused among multiple apps, we provide these
similarity approaches with tools to only focus on unique code
not present in any of the publicly available sources (code most
relevant for similarity analysis) and thus potentially improve
their efficiency.

Our work is most closely related to PlayDrone study by
Viennot et al. [19]. Focusing on characteristics of GooglePlay
market, the authors looked at the libraries’ usage. Although
within our study we also provide insight into the use of
libraries by developers, we broaden our focus to shared code
in general rather than the use of libraries. In a similar vein,
AdRob [9] looks at library usage and popularity of markets
among cloned applications. As opposed to AdRob and Play-
Drone, we look at various markets and contrast code reuse
between both malicious and legitimate applications to give
further foundation for the development of efficient repackaging
detection.

III. BACKGROUND

An Android app is in essence a package (.apk file) that
contains the executable file in Dalvik executable format(.dex
file); a manifest file (AndroidManifest.xml) that describes the
content of the package, some of the behavior information, the
entry points for the code and the permissions information;
optional native code (in form of executable or libraries) that
usually is called from the .dex file using the java native
interface or jni; a digital certificate authenticating an author;
and the resources that the app uses (e.g., image, sound files
etc.). Each .apk file is annotated with additional information,
so called meta-data, such as the app creation date and time,
version, size, etc.

Theoretically, any part of an .apk file can be reused.
Practically, code reuse is commonly seen on several levels:

• Meta-data level: these are the surface code characteristics
easily reachable from various components of .apk pack-
age, such as AndroidManifest.xml, a digital certificate au-
thenticating an author, the meta-data. These components

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

are best described as application settings and thus are
often reused among developers.

• Resource level: visual features of Android apps are com-
monly embedded in resources files (e.g., images, sounds,
UI aspects). Some of these resources have their origins on
the Android SDK and sample applications. Sometimes,
the reuse of these visual aspects aims at human recogni-
tion of Android applications and thus commonly used by
malware authors to hide malicious code under legitimate
and recognizable interfaces.

• Binary level: code reuse at this level is the most com-
monly seen practice. It is typically due to the inclusion
of different libraries, the wide availability of sample and
open source apps.

Both meta-data and resource level reuse are complementary
to reuse at a binary level. As such in this work we explore
code reuse at the binary level and focus specifically on .dex
file. The .dex file is a binary container for the Java code and
the associated data. It includes a header containing meta-data
about the executable followed by identifier lists that contain
references to strings, types, prototypes, fields, methods and
classes employed by the executable. The final part of the
.dex file is the data section that contains code and data. The
structure of .dex file is shown in Figure 1.

One of the primary motivations for this work lies in the
substantial overhead incurred by SDKs and various libraries
in many cases automatically included in an app. In general,
depending on the complexity of an Android app and the
libraries included, the number of methods could vary from
10 to 10,000.

For example, a simple “Hello World” Android program
compiled with default settings results in 8,095 various meth-
ods, most of which are common, i.e., meant to be reused and
found in the majority of existing apps. On top of this, a quick
n-gram based similarity analysis of this program reveals a
close resemblance of Zitmo malware 1. Giving insight and
meaning into this overhead can help to improve accuracy and
speed of the analysis.

A. Transforming the apps

Obfuscation is commonly used approach to protect an
app/malware from reverse engineering or detection. The ob-
fuscation transformations can be broadly divided into the
following categories2:

• Level 0. Trivial transformations: that change the fi-
nal hashing signature without any code modifications.
These modifications include repackaging, re-alignment,
re-signing, rebuilding, files replacement (as such as icon),
and addition of junk files.

1We employed publicly available web interface of DroidKin [11]
2Rastogi et al. [18] described three different classes of transformations

for Android apps where they included the majority of the transformations
described by Zheng et al. [23]. Since these classifications have a narrow
view of transformation, we present a broad list of obfuscation transformations
ranging from simple to more advanced techniques.

• Level 1. Syntactic code transformations. These transfor-
mations target analysis activities and affect the amount
of effort needed to understand the app once it has been
reverse engineered. This category includes changes in
the package name, identifier renaming, method renam-
ing, class renaming, string encryption, inserting defunct
methods. ProGuard and DexGuard perform some of these
transformations.

• Level 2. Optimization transformations. These transfor-
mations are not designed to obfuscate code, but rather
optimize it. At this level of transformations, common
technique are shrinking, code rearrangement and removal
of code duplication. Proguard also offers Level 2 opti-
mization.

• Level 3. Semantical code transformations. This category
includes code reordering, junk code insertion, encrypting
payloads and native exploits, function inlining and out-
lining, reflection, bytecode hiding, bytecode encryption,
call indirections.

IV. DESIGN

The proposed approach aims to systematically identify
common code, i.e., the code actively reused by Android app
developers. As such CodeCheck design has dual purpose. On
the one hand, it generates a collection of reused code. On the
other hand, it provides a benchmark for a given app to assess
its uniqueness, i.e., indicate amount and nature of its code
reuse.

In both cases, the proposed system encompasses three steps:
feature extraction, hashing, and assessment. For each app, the
system derives relevant features and forms vectors that serve as
a basis in the assessment where code components’ reuse infor-
mation is accumulated and measured. Once the stream of apps
is processed, code usage statistics is analyzed and distributed
among corresponding repositories. These repositories are the
main benchmarks for further analysis of individual apps.

A. Processing stream of apps

In this work, we focus primarily on binary code reuse and
specifically on analysis of .dex file. Due to the nature of the
.dex structure, code is distributed among various parts of an
executable file. We follow class and method identifiers lists
to obtain information on classes and methods. This approach
gives us access to all methods referred to by .dex file, whether
specifically defined in the file or not. Although methods
with identical names should have unique content, it has been
observed that malicious functionality is often hidden under
familiar method’s names. Moreover, methods’ names are often
obfuscated. As such we proceed to extract both method’s name
and its corresponding opcodes.

Opcodes are generally favored in representing low-level
semantics of the code. Although extracting opcodes alone
might abstract specific details describing a program control
transfer or an arithmetical operation, enhancing them with the
corresponding operands creates variability in code. We thus
resort to using opcodes alone.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

To provide unique and easily matched fingerprint for each
method, extracted opcodes are hashed using MD5 algorithm.
The resulting hashes are then correlated and analyzed by
categories.

B. Common code repositories

Commonly reused code is stored in several repositories
according to its origin and classification. The origin is closely
related with where the code was found, while classification is
based on analysis of verified non-suspicious apps.

Once created these repositories are maintained and updated
following the same procedure3.We distinguish the following
categories of common code:

• Android SDK related code (a.k.a Baseline filter): The
development of an Android app requires a set of li-
braries and essential tools that are provided in Android
SDK environment. These include a debugger, a handset
emulator based on QEMU, libraries, sample code with
examples on the use of these libraries, documentation,
and tutorials. We create a baseline from the android.jar
libraries and samples distributed with different versions of
the Android SDK. These versions include API 22 MNC
preview, API 22/Android 5.1.1, API 21/Andorid 5.0.1,
API 20, L preview, API 20/Android 4.4W.2, API 19/
Android 4.4.2, API 17/Android 4.2.2, API 16/Android
4.1.2, API 12/Android 3.1, API 10/Android 2.3.3, API
8/Android 2.2 and API 7/Android 2.1. All those include
Android support libraries with more features included in
each new release.

• Open source apps: The code in this category cames
from free open source apps. These samples do not include
ads libraries or commercial libraries. Some open source
libraries might be present in these apps. These category
only includes full functional apps, i.e., no code samples.

• Internet apps code samples: This category includes
app samples illustrating Android app development and
collected from online repositories such as github, online
communities, Android tutorials and personal blogs. This
category also includes clients for well known services
(e.g., banking app), open source games and utilities. Note
that open source libraries collected from these sources are
not included in this category.

• Market-based apps: This category includes various fil-
ters, based on the markets we analyzed. Non-suspicious
apps from each market are used to create a filter for that
specific market. Note that all methods found the Baseline
filter are removed prior to creating market filters. We also
compile an extra filter with the commmon code appearing
in different markets.

• Generic methods: This filter includes all methods that
typically appear in the majority of libraries, and those
that are only in obfuscated classes. Usually these methods
are small and very generic. init() and cinit() are examples

3We make these repositories publicly available to a wider academic
community for further research: link is blinded for review

of these methods. These methods are extracted from the
apps after applying Baseline filter.

• Open source libraries: This filter includes free open
source libraries created or migrated to Android to fa-
cilitate app development such as kawa, apache, action-
barsherlock, spongycastle. These are libraries focused
on communications, security, interface enhancement, data
processing, graphics, etc. These libraries were extracted
from non-suspicious apps from all the markets after
applying Baseline filter.

• Ads libraries: A common approach to profit from An-
droid apps is to incorporate advertisements in an appli-
cation. Many advertisement libraries now offer analytic
support and the corresponding libraries to be included
in an app. Some examples of these libraries are Acra,
Sponsorpay, Localytics. Since the use of certain libraries
often leads to aggressive app behavior, many Android
antivirus engines flag apps with specific ads libraries as
unwanted. In addition, several studies pointed out that
the use of advertisement SDKs is potentially indicative
of app’s maliciousness [9]. This filter includes all the ads
libraries identified in all market apps.

• App creators: This category refers to the platforms that
allow us to generate a complete Android app from pre-
build components. Some examples of these generators are
Appcelerator, Titanium, Andromo. We identified several
classes commonly used by this platforms and created a
filter to reflect their presence.

• Commercial third party libraries: There are libraries
that do not incorporate any advertisements, are not open
source, e.g., game engines unity3d or cocos2d. The use
of such libraries must be accompanied by a paid license.

• Social Network APIs: These APIs commonly provide
access to social networks and services from within an
app.

Fig. 2. An illustration of a Bloom filter

a) Bloom filter: In order to maintain efficiency in storage
and speed, common code repositories are implemented as
Bloom filters. A Bloom filter is a simple data structure that
allows space-efficient representation of set elements to support
fast memberships queries. Given a set S = s1, s2, . . . , sn of
n elements, the Bloom filter relies on a bit vector and a set
of hash functions. The idea of a Bloom filter is illustrated in
Figure 2.

Given a vector v of m bits, initially set to 0, and a set
of k hash functions H = h1, h2, . . . , hk, an element si ∈ S
will set all bits of vector v corresponding to the following
positions h(si)1, h(si)2, . . . , h(si)k to 1. Note that the same

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The process of building Bloom filters

bit might be set to 1 multiple times either through different
hash functions for the same element si or different elements
of S. The process of verifying if an element b is present in
the Bloom filter is analogous to the insertion process with
one difference: instead of setting the bits corresponding to the
hashes to 1 we verify if the bits corresponding to positions
h(b)1, h(b)2, . . . , h(b)k are already set to 1. If at least one bit
is set to 0 then an element b is not in the Bloom filter.

b) Analysis of individual apps: Once repositories are in
place, analysis of an individual app is expedited. An Android
app is processed in fashion similar to processing a stream
of apps. Opcodes are extracted from each of the discovered
.dex file methods and hashed to produce feature vectors. These
vectors are then matched against Bloom filters to discover the
presence and nature of code reuse. To assess the amount of
code reuse, feedback from Bloom filters is summarized as a
percentage of code reuse in each filter category.

V. DATA

To evaluate the performance of the proposed approach and
study the characteristics of code reuse, we gathered a large
collection of Android applications from ten markets around
the globe, VirusTotal, and three datasets: Android Malware
Genome project [26], Drebin [4] and Android botnet dataset,
provided for our study by an antivirus vendor.

Market apps were collected between September of 2014
and August of 2015 and represent the most popular apps
in the corresponding markets. All apps were inspected by
ESET anti-virus scanner to ensure the absence/presence of
malware. As such malware apps retrieved from GooglePlay
market were filtered out to retain benign samples only. The
final set of market apps contains 17,743 apps: 4574 apps from
GooglePlay, 1395 apps from Fdroid, an open-source Android
market, 5631 apps from six Chinese markets, 1248 from
Swedish market, called Appland and 4895 from independent
Aptoide market.

We combined the malicious apps from the Android Malware
Genome project, Drebin and the Android botnet dataset;
and removed all apps with duplicated .dex files to eliminate
redundancy. The remaining apps were combined in one set
that we refer to as Android Malware Collection.

TABLE I
ANALYZED DATA

Origin Total apps Legitimate Malware Unwanted Unsafe
Android SDK related samples 50 50 0 0 0
Internet Samples 100 100 0 0 0
Fdroid 1395 1395 0 0 2
GooglePlay 4574 4572 2 82 31
3gyu (anruan) 1564 1551 13 228 96
anzhi 2192 2132 60 623 345
appland 1248 1235 13 252 23
aptoide 4895 4891 4 729 51
gfan 454 454 0 69 83
jimi 330 329 1 25 3
mumayi 45 44 1 10 2
nduoa 1046 1036 10 117 293
Android Malware Collection 3928 0 3928 - -
Virus Total stream 41448 0 41448 - -
Total: 63269 17789 45480 2135 929

TABLE II
STATISTICS OF THE BASELINE FILTER CODE REUSE

Source Total # of
methods

Common
methods

Other
methods

Common
methods

Other
methods

Internet Samples 642462 436001 206461 67.86% 32.14%
Fdroid 5375424 3629595 1745829 67.52% 32.48%
GooglePlay 94946363 62022265 32924098 65.32% 34.68%
3gyu 10109255 5753632 4355623 56.91% 43.09%
anzhi 16783573 9588928 7194645 57.13% 42.87%
appland 15758682 9972300 5786382 63.28% 36.72%
aptoide 105087308 68132509 36954799 64.83% 35.17%
gfan 4281811 2375660 1906151 55.48% 44.52%
jimi 850013 421208 428805 49.55% 50.45%
mumayi 614394 350402 263992 57.03% 42.97%
nduoa 7404078 4189538 3214540 56.58% 43.42%
Android Malware Collection 14104241 7221264 6882977 51.20% 48.80%

We also collected and compiled 100 apps from github,
various online tutorials and blogs. These samples are bundled
under the ’Internet code samples’ category. 50 app samples
were retrieved from official Google framework examples.

The resulting set of 63,269 samples employed for our
experiments contains only apps with unique MD5 hash values.
The details of our datasets are shown in Table I. The Table
also shows the number of apps labeled by ESET as unwanted,
unsafe or malware.

VI. EXPERIMENTAL RESULTS

To understand code reuse, we conducted several experi-
ments. In the first round of experiments, we create a baseline
filter and populated the filters with the apps from the specified
markets. In this round, we aim to evaluate existence of com-
mon code in the markets. In the second round of experiments,
we analyze the content of filters in more details and create
new Bloom filters based on the functionality of the methods
(e.g., advertisement libraries). In the third round, we measure
common, rare and unique code, and the objectives of the
methods based on the name of the libraries that it belongs.
In the final round, we study 15 well-known apps with respect
to the created filters.

A. Baseline filter

In the first experiment, we aim to measure the presence
of baseline common code between the markets. The baseline
filter is created from the Android SDK related code. Since
most of the apps are build using Google Android SDK, we
envision this filter will represent a large portion of the code
reused in the apps. The filter contains 18,532 unique methods.

The application of this filter shows that the majority of apps
across different markets contain over 50% of Android SDK

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

related code (Table II). Removing even this amount of code
during similarity analysis will allow to significantly improve
the performance of the method.

After removing code present in baseline filters, we take a
further look at the remaining code (referred to in Table II
as ’other methods’). In this remaining portion we measure
frequent code (if the method appears in at least 5% of
the apps), rare code (if it appears in more than 1%) and
unique code (if the method appears in less than 1% of the
apps). Table III shows the code breakdown in three datasets.
GooglePlay market apps contain the smallest amount of rare
and unique code (13%), while apps in Android Malware
Collection feature above 21%, of such code. In essence, this
is the code that malware detection analysis should focus on.

TABLE III
STATISTICS OF THE CODE OCCURRENCE

Source Freq. code Rare code Unique code
GooglePlay 87.31% 7.63% 5.06%
Fdroid 87.94% 2.5% 9.56%
Android Malware Collection 73.17% 21% 5.83%

B. Detailed content of frequent code

A more detailed insight into the common code reused
from GooglePlay data is shown in Table IV. As expected
the majority of common methods come from various libraries,
while 5% of code is effectively borrowed from other legitimate
apps.

Further analysis of this borrowed code showed that most of
the employed methods are longer and about 25% of them are
named obfuscated. Class/method name obfuscation approach
was mentioned as Level 1 or our transformations propose. This
transformation is commonly used by Proguard, the well known
Android obfuscator, integrated into the Android framework.
Such Proguard transformation is typically recommended by
various tutorials and manuals, and as our result shows consis-
tently followed by developers, i.e., 40.93% of all methods in
common code were obfuscated.

In spite of slightly larger methods being reused from other
apps, distribution of common methods’ size (in terms of their
opcode representation) across categories seems to be fairly
uniform (Figure 4). It is interesting to note that on average
smaller methods are reused more frequently and usually under
various names, i.e., although class/method name changes the
content remains exactly the same. This was noted before as
a sign of malicious functionality being hidden under familiar
method’s names. As this experiment showed such practice is
common across legitimate apps as well, and thus cannot be
relied upon in malware detection.

C. Open source filter

After application of baseline filters, the remaining code is
used to create a new filter that contains the common code
found in open source apps available on the Internet. Fdroid and
collected open source apps serve as a primary source of apps
for this filter. This filter contains 20814 methods. Applying

TABLE IV
ANALYSIS OF COMMON METHODS (EACH REPOSITORY SEPARATELY)

Category Number of methods
GooglePlay Fdroid Android Malware Collection

Android libraries 218294 (78.63%) 11319 (83.50%) 155546 (71.53%)
Ads libraries 7563 (2.72%) 24 (0.18%) 1931 (2.49%
Open source libraries 10811 (3.89%) 2469 (18.21%) 2434 (3.13%)
App creators 3978 (1.43%) 27 (0.20%) 72 (0.09%)
Third party libraries 571 (0.21%) 0 6 (0.01%)
Social network APIs 29166 (10.51%) 164 (1.21%) 1230 (1.58%)
Android apps 14057 (5.06%) 113 (0.83%) 16611 (21.39%)
Overall obfuscated 40.93% 6.68% 12%

this filter to the apps retrieved from various markets shows
that a fairly small amount of code (a little over 5%) seems to
be borrowed from open source apps (Table V).

TABLE V
STATISTICS OF THE OPEN SOURCE FILTER CODE REUSE

Source Total # of methods Common OS methods Common OS methods %
GooglePlay 94946363 6597425 6.95%
3gyu 10109255 763882 7.56%
anzhi 16783573 1127782 6.72%
appland 15758682 1091356 6.93%
aptoide 105087308 5906044 5.62%
gfan 4281811 271498 6.34%
jimi 850013 68187 8.02%
mumayi 614394 44286 7.21%
nduoa 7404078 544668 7.36%
Android Malware Collection 14104241 1331438 9.44%

D. GooglePlay market analysis

After filtering out baseline and open source code, a filter
with most frequently used methods (appearing in at least
2.5% of apps) is created using 4574 apps retrieved from
GooglePlay market. We consider this filter as benign as all
malicious/unsafe samples were removed prior to analysis. It
is important to note that none of the previous filters include
methods from advertisement libraries, third-party libraries or
malicious code. This filter contains 154443 methods. Table VI
presents the statistics of GooglePlay code.

TABLE VI
STATISTICS OF THE GOOGLEPLAY FILTER CODE REUSE

Source Total # of methods Common GP meth-
ods

Common GP
methods %

3gyu 10109255 1037433 10.26%
anzhi 16783573 1576796 9.39%
appland 15758682 3261629 20.70%
aptoide 105087308 18684876 17.78%
gfan 4281811 449081 10.49%
jimi 850013 75732 8.91%
mumayi 614394 80808 13.15%
nduoa 7404078 755617 10.21%
Android Malware Collection 8018472 836425 10.43%

E. Suspicious Filter

The suspicious Bloom filter was build on code derived
from Android Malware Collection and not present in baseline,
open source, and GooglePlay filters. This filter contains 15317
unique methods. Note that code present in this filter is not
necessarily malicious, but clearly not commonly present in
legitimate apps.

Application of this filter to other markets reveled interesting
tendencies. The summary is given in Table VII. The amount
of code shared by these apps on alternative markets is less
than 1%. In other words, roughly 1% of apps contains code
that resembles known malware.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The size of the methods grouped by category.

Manual analysis of malicious Bloom filters revealed several
large methods distributed across only a few apps. The largest
methods with 12130 and 4521 opcodes were found in six
different malicious samples. These samples were repackaged
versions of an open source game enriched with DroidKunfu
malware functionality.

Following previously reported observation that the use of
advertisement SDKs is potentially indicative of app’s mali-
ciousness [9], we notice no visible distinction between the
use of ad code/libraries in benign and malicious apps.

TABLE VII
STATISTICS OF THE SUSPICIOUS FILTER APPLICATION

Source Total # of methods Common suspicious
methods

Common
suspicious
methods %

3gyu 10109255 70466 0.70%
anzhi 16783573 100218 0.60%
appland 15758682 27809 0.18%
aptoide 105087308 55039 0.05%
gfan 4281811 10633 0.25%
jimi 850013 38784 4.56%
mumayi 614394 2504 0.41%
nduoa 7404078 30673 0.41%

F. Duplicated methods in Android Malware Collection

We analyzed how much of the code had been reused in
Android malicious datasets used in previous studies. Figures 5
show the true amount of code duplication in these datasets. The
left hand side demonstrates the amount of unique methods as
the dataset being matched to legitimate filter. This is contrasted
by the right hand side that shows possible reduction in code
if duplicate hashes were to be stored in Bloom filter. Both
Drebin and Botnet data show a reduction of unique methods
by half, indicating a significant code reuse among apps within
those datasets. It should be noted though that this unique code
does no imply malicious functionality, but rather indicates the
code that is not commonly seen in legitimate apps.

VII. CODECHECK IN ACTION

To analyze the practicality of CodeCheck, we experimented
with 10 legitimate and malware apps. The aim of this analysis

Fig. 5. The datasets from Android Malware Collection.

is to demonstrate the potential benefits of using CodeCheck,
for example in initial stages of analysis.

TABLE VIII
CODECHECK ANALYSIS OF BENIGN ANDROID APPS

App Total
of
meth-
ods

Baseline fil-
ter

Open
Source

GooglePlay Suspicious Unique

Facebook app 2553 1235 (48%) 129 (5%) 213 (8%) 2 (0%) 974 (38%)
Viber app 38302 20882 (54%) 2005 (5%) 2698 (7%) 11 (0%) 12706 (33%)
Trivia crack app 34547 19472 (56%) 1762 (5%) 5102 (14%) 2 (0%) 8209 (23%)
Angry birds 2 app 41145 27545 (66%) 1894 (4%) 9435 (22%) 1 (0%) 2270 (5%)
Flixter app 49494 29061 (58%) 2276 (4%) 9055 (18%) 4 (0%) 9098 (18%)

Legitimate apps. The legitimate apps were retrieved from
GooglePlay. The selected apps and their corresponding results
are showed in Table VIII.

The following legitimate apps were analyzed:
Facebook app (com.facebook.katana) contains the majority

of the unique code under “facebook” package, which is
expected behavior.

Viber app (com.viber.voip) contains the majority of the code
under “android” class. It contains a large portion (33%) of
never seen before code that upon manual inspection turned
out to be viber package and code from webrtc project.

Trivia crack app (com.etermax.preguntados.lite) includes
unseen code from eight different advertisement libraries, four
social media sites and a third part library for games “unity3d”.
The unclassified code is obfuscated with level 1 transforma-
tion.

Angry birds 2 app (com.rovio.baba) include six advertise-
ment libraries, two paid libraries for games, “prime31” and
“unity3d”; social media from three sites and a large amount
of code under “android” package.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

Flixter app (net.flixster.android) with its 18% of unique
code contains three ads libraries, code from five open source
libraries, four social media sites and two analytical engines
focused on digital media. The remaining 15% is obfuscated
code.

TABLE IX
CODECHECK ANALYSIS OF MALWARE APPS

App Total
of
meth-
ods

Baseline fil-
ter

Open
Source

GooglePlay Suspicious Unique code

Ransomware/Locker 102 3 (2 %) 0 (0 %) 0 (0 %) 0 (0 %) 99 (97 %)
HackingTeam 4310 1438 (33 %) 167 (3 %) 453 (10 %) 2 (0 %) 2250 (52 %)
ProxyTrojan 60 29 (48 %) 4 (6 %) 0 (0 %) 0 (0 %) 27 (45 %)
Ransomware 6919 5898 (85 %) 595 (8 %) 159 (2 %) 0 (0 %) 267 (3 %)
HijackRAT 3436 1520 (44 %) 238 (6 %) 1443 (41%) 0 (0 %) 235 (6 %)
Android Malware
Collection

14104241 51.20% 9.44% 10.43% N/A 5.83%

Malware apps. We obtained the five most recent Android
malicious samples from ContagioMinidump blog [1] and used
CodeCheck to investigate the uniqueness of their code. The
apps were analyzed through each of the created filters. Unique
code category refers to the amount of code that remained after
application of baseline filter and occurred in less than 1% of
apps. The results are showed in Table IX. For comparison, this
Table also includes the numbers received for Android Malware
Collection (these numbers are discussed in previous sections).
The following malware samples were analyzed:

Android Ransomware/Locker
(MD5:735B4E78B334F6B9EB19E700A4C30966) is a very
small app. As we can see almost all the code found in the
app is unique. Manual analysis of unique code revealed that
it is obfuscated, and mostly contained within two classes.

HackingTeam
(MD5:904ED531D0B3B1979F1FDA7A9504C882) is an An-
droid sample that reused common code. The large portion of
52% of unique unseen code is located under “android/app”
package, that hides app’s real objective. Manual analysis of
unique code revealed a presence of the lua interpreter (never
seen in any other apps) and obfuscated code.

Android Proxy Trojan
(MD5:D05D3F579295CD5018318072ADF3B83D) is another
small malicious app. 48% of unique code is hidden under
“android” package. No obfuscation was found in this sample.

Locker Ransomware
(MD5:F836F5C6267F13BF9F6109A6B8D79175) is a large
app, with only 3% of unique code, all of which is under
“android” package.

AndroidOS Wroba / HijackRAT
(MD5:A21FAB634DC788CDD462D506458AF1E4) is an app
that contains only 6% of unique code, the majority of which is
in “android/app” package. There is some obfuscation present
in unique methods, but the container class and package name
remains in plain text.

As opposed to legitimate apps, this set of malware seems
to have slightly less SDK-related code. This number, however,
is close to what we saw in apps from Android Malware
Collection. What interesting here is the amount of unique
code. Three out of five analyzed apps have significantly higher

percentage of unique code, i.e., code that was not commonly
seen in other apps before. Since CodeCheck extracts and labels
known code focusing on this unique portion can expedite the
analysis.

VIII. CONCLUSION

In this work we presented CodeCheck, a system that allows
to analyze the amount and nature of code reuse in Android
apps. We use CodeCheck to characterize code commonly
shared among legitimate and malicious applications on a
collection of over 60,000 Android apps. Our analysis revealed
several aspects of code reuse that can be leveraged in devel-
oping better, more efficient and accurate malware detection
approaches:

• Both benign and malicious apps contain over 80% of
common code, thus relying on the presence of similarities
between apps will not serve as a reliable predictor of apps
repackaging.

• Unique code only represents 5% of all code in both
legitimate and malware apps. Given this insight, focusing
detection efforts on this portion of code can significantly
reduce processing time allowing for more complex anal-
ysis.

• There is no distinction between the amount of adver-
tisement SDKs used in benign and malicious apps. Both
benign and malware data employed almost 3% of code
attributed to various libraries.

• Although code obfuscation is often seen as a sign of ma-
licious functionality, our results reveal that this practice
is much more common across legitimate apps. Almost
41% of all analyzed methods from apps collected from
GooglePlay market were obfuscated, compared to only
12% of methods derived from malicious apps.

• Our research is complementary to other approaches,
where we could be helping to increase the performance
and scalability of other systems, or explore new ap-
proaches using the composition of the apps.

To facilitate the following research in this area, we make the
repositories generated in the course of this study together with
the sets of unique code publicly available to a wider academic
community.

REFERENCES

[1] Contagio mobile.
[2] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API Level

Features for Robust Malware Detection in Android. In Proceedings
of the 9th SecureComm, Sydney, Australia, September 25-27 2013.

[3] A. J. Alzahrani, N. Stakhanova, H. Gonzalez, and A. Ghorbani. Char-
acterizing Evaluation Practices of Intrusion Detection Methods for
Smartphones. Journal of Cyber Security and Mobility, 2014.

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin:
Effective and explainable detection of android malware in your pocket.
In Proceedings of the 21th Annual NDSS, 2014.

[5] V. Chebyshev and R. Unuchek. Mobile malware evolution: 2013, July
2014.

[6] J. Crussell, C. Gibler, and H. Chen. Scalable semantics-based detection
of similar android applications. In 18th ESORICS, Egham, U.K.

[7] J. Crussell, C. Gibler, and H. Chen. Attack of the clones: Detecting
cloned applications on android markets. In 17th ESORICS), volume
7459, pages 37–54. Springer, 2012.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

[8] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of
mobile malware in the wild. In Proceedings of the 1st ACM workshop
on SPSM ’11, New York, NY, USA, 2011. ACM.

[9] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi. Adrob:
Examining the landscape and impact of android application plagiarism.
In Proceedings of the 11th MobiSys, Taipei, Taiwan, 2013.

[10] H. Gonzalez, A. A. Kadir, N. Stakhanova, A. J. Alzahrani, and A. A.
Ghorbani. Exploring reverse engineering symptoms in android apps.
In Proceedings of the Eighth European Workshop on System Security,
page 7. ACM, 2015.

[11] H. Gonzalez, N. Stakhanova, and A. Ghorbani. Droidkin: Lightweight
detection of android apps similarity. In Proceedings of the 10th
SECURECOMM, 2014.

[12] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker:
scalable and accurate zero-day android malware detection. In The 10th
MobiSys, pages 281–294, 2012.

[13] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp:
A scalable system for detecting code reuse among android applications.
In Proceedings of the 9th DIMVA’12, pages 62–81, Berlin, Heidelberg,
2013. Springer-Verlag.

[14] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: Feature hashing
malware for scalable triage and semantic analysis. In Proceedings of
the 18th ACM Conference on Computer and Communications Security,
CCS ’11, pages 309–320, New York, NY, USA, 2011. ACM.

[15] J. Jeong, D. Seo, C. Lee, J. Kwon, H. Lee, and J. Milburn. Mys-
teryChecker: Unpredictable attestation to detect repackaged malicious
applications in Android. In Malicious and Unwanted Software: The
Americas (MALWARE), 2014 9th International Conference on, pages
50–57, Oct 2014.

[16] M. La Polla, F. Martinelli, and D. Sgandurra. A survey on security for
mobile devices. Communications Surveys Tutorials, IEEE, 15, 2013.

[17] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang. Plagiarizing
smartphone applications: Attack strategies and defense techniques. In
Proceedings of the 4th ESSoS’12, pages 106–120, Berlin, Heidelberg,
2012. Springer-Verlag.

[18] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android
anti-malware against transformation attacks. In Proceedings of the 8th
ACM SIGSAC, pages 329–334. ACM, 2013.

[19] N. Viennot, E. Garcia, and J. Nieh. A measurement study of Google
Play. In Proceedings of SIGMETRICS 2014, page 13, 2014.

[20] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat:
Android malware detection through manifest and api calls tracing. In
Proceedings of the 7th Asia JCIS, pages 62–69, Aug 2012.

[21] L. K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
Proceedings of the 21st USENIX Conference on Security Symposium,
Security’12, pages 29–29, Berkeley, CA, USA, 2012. USENIX Associ-
ation.

[22] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection. In 7th
ACM Conference on WiSec 2014, Oxford, United Kingdom, 2014.

[23] M. Zheng, P. P. Lee, and J. C. Lui. Adam: an automatic and extensible
platform to stress test android anti-virus systems. In Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 82–101.
Springer, 2013.

[24] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast, scalable
detection of ”piggybacked” mobile applications. In Proceedings of the
CODASPY ’13, pages 185–196, New York, NY, USA, 2013. ACM.

[25] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smart-
phone applications in third-party android marketplaces. In Proceedings
of the Second ACM CODASPY ’12, pages 317–326, New York, NY,
USA, 2012. ACM.

[26] Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy (SP), pages
95–109. IEEE, 2012.

[27] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In 19th Annual NDSS, 2012.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 25,2021 at 20:03:46 UTC from IEEE Xplore. Restrictions apply.

