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ABSTRACT

Open-source software is open to anyone by design, whether
it is a community of developers, hackers or malicious users.
Authors of open-source software typically hide their iden-
tity through nicknames and avatars. However, they have no
protection against authorship attribution techniques that
are able to create software author profiles just by analyzing
software characteristics.

In this paper we present an author imitation attack that
allows to deceive current authorship attribution systems and
mimic a coding style of a target developer. Withing this
context we explore the potential of the existing attribution
techniques to be deceived. Our results show that we are
able to imitate the coding style of the developers based on
the data collected from the popular source code repository,
GitHub. To subvert author imitation attack, we propose a
novel author obfuscation approach that allows us to hide
the coding style of the author. Unlike existing obfuscation
tools, this new obfuscation technique uses transformations
that preserve code readability. We assess the effectiveness of
our attacks on several datasets produced by actual develop-
ers from GitHub, and participants of the GoogleCodeJam
competition. Throughout our experiments we show that the
author hiding can be achieved by making sensible transforma-
tions which significantly reduce the likelihood of identifying
the author’s style to 0% by current authorship attribution
systems.
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1 INTRODUCTION

Consider the following scenario. Alice is an open source
software developer. She contributes to different projects and
typically stores her code on GitHub repository. Bob is a
professional exploit developer who wants to hide his illegal
activities and implicate Alice. To do this, he collects samples
of Alice’s code and mimics her coding style. A sample of
Bob’s malware ends up in the hands of law enforcement
agency, where the analysis shows that a malware is written
by Alice. This unfortunate scenario is possible due to the
recent advances in software authorship attribution field that
focuses on identification of the developer’s style. In this work
we explore adversarial side of software attribution and show
how an adversary can confuse these techniques and conceal
his identity.

The study of authorship attribution (also known as sty-
lometry) comes from the literary domain where it is typically
used for identifying the author of a disputed text based on the
author’s unique linguistic style (e.g., use of verbs, vocabulary,
sentence length). The main premise of stylometric techniques
lies in the assumption that authors unconsciously tend to
use the same linguistic patterns. These patterns uniquely
characterize the author’s works and consequently, allow one
to differentiate him/her among others.

Drawing an analogy between an author and a software
developer, software authorship attribution aims to identify
who wrote a program given its source or binary code. Applica-
tions of software authorship attribution are wide and include
software forensics - where the analyst wants to determine
the author of a suspicious program given a set of potential
adversaries, plagiarism detection - where the analyst wants
to identify illicit code reuse, programmer de-anonymization -
where the analyst is interested in finding information on an
anonymous programmer, and in general any scenario where
software ownership needs to be determined. Traditionally,
authorship attribution studies relied on a large set of samples
to generate accurate representation of an author’s style. A re-
cent study by Dauber et al. [13] showed that this is no longer
necessary and even small, and incomplete code fragments
can be used to identify the developers of samples with up to
99% accuracy.
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In this work, we propose an author imitation attack on
authorship attribution techniques. Author imitation attack
identifies a developer (the victim) and transforms the at-
tacker’s source code to a version that mimics the victim’s
coding style, while retaining the functionality of the original
code. The attack success is measured by its ability to deter
existing attribution techniques from recognizing this code
as attacker’s code and by its ability to imitate the victim
author’s style. The author imitation task can be considered as
an extension of the authorship attribution task to a real-world
scenario. Existing authorship attribution research assumes
that authors are honest and do not attempt to disguise their
coding style. We challenge this basic assumption and explore
existing authorship methodologies in adversarial setting.

Within this context, we investigate four existing source
code attribution techniques introduced by Ding et al. [14],
Caliskan et al. [11], Burrows et al. [8], and Kothari et al. [19].
We explore their accuracy and their potential to be deceived
by author imitation attack. Through our experiments we show
that all these techniques are susceptible to author imitation
and we are able to successfully imitate 73.48% of the authors
on GoogleCodeJam and 68.1% of the authors on GitHub.

Finally, to subvert author imitation attack, we introduce
an author hiding method and a novel coding style obfuscation
approach- author obfuscation. The idea of author obfuscation
is to allow authors to preserve the readability of their source
code, while removing identifying stylistic features that can
be leveraged for code attribution. Code obfuscation, common
in software development, typically aims to disguise the ap-
pearance of the code making it difficult to understand and
reverse engineer the code. In contrast, the proposed author
obfuscation hides the original author’s style by leaving the
source code visible, readable and understandable. Our exper-
iments show the effectiveness of author hiding. Indeed, we
are able to reduce the accuracy of the Ding et al. attribution
system from 73.84% of correctly classified authors to 1.08%
by using only layout, lexical, syntactic transformations on
the GoogleCodeJam dataset. We are also able to decrease
the accuracy of the Caliskan et al. attribution system from
80.92% to 27.96% on the GitHub dataset. The attribution
accuracy of Burrows et al. and Kothari et al. systems were de-
creased to 0% on the GitHub dataset. By adding control-flow
obfuscation we were able further reduced the performance of
Caliskan et al., Ding et al., Burrows et al. and Kothari et al.
systems to 0%. Our results demonstrate that it is possible
to successfully attack current authorship attribution systems
with transformations which preserve readability of the code.

The rest of this paper is organized as follows. Section 2
analyses the existing attribution techniques. The author imi-
tation attack is introduced in Section 3. The author hiding
attack is presented in Section 4. The author obfuscation
transformations and the evaluation of proposed attacks are
described in Section 5. We conclude our work in Section 6.

2 BACKGROUND AND RELATED
WORK

Authorship attribution, also known as stylometry, is a well
known research subject in the literary domain. The recent
interest in applying attribution techniques to software code
raised a number of questions. One of them is the selection
of characteristics (i.e., features) indicative of an author (i.e.,
software developer). Although the process of feature selection
is one of the most crucial aspects of attribution, there is no
guide to assist in the selection of the optimal set of features.
As a result, the majority of studies venture to use features that
prove to be most helpful in particular contexts. The earliest
work in software forensics by Spafford and Weber [27] focused
on a combination of features reflecting data structures and
algorithms, compiler and system information, programming
skill and system knowledge, choice of system calls, errors,
choice of programming language, use of language features,
comment style, variable names, spelling and grammar. Sallis
et al. [26] extended this work by using additional features,
such as cyclomatic complexity of the control flow and layout
conventions. Krsul et al. [20], Kilgour et al. [17] and Ding et
al. [14] introduced a broad classification of features according
to their relevance for programming layout, programming style,
programming structure, and linguistic metrics. Trivial source
code obfuscation techniques can obscure part of these features,
leading to a significant decrease in attribution accuracy.

A granular approach might be more effective in under-
standing what groups of features are beneficial in attribution
and resistant to different kinds of obfuscation techniques. In
this work, we classify the features into the following groups:
layout, lexical, syntactic, control-flow, data-flow. Figure 1
shows such classification. These groups build on each other
starting with simple and easily extractable features to more
advanced ones focusing on the inner logic and structure of
the program.

Figure 1: Feature selection levels in software author-
ship attribution

Layout features refer to format or layout metrics [9]
that characterise the form and the shape of the code. Layout
features include the length of a line of code, the number
of spaces in a line of code, and the frequency of characters
(underscores, semicolons, and commas) in a line of code. For
the following discussion, we group these metrics as follows:
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metrics that measure indentation, placement of comments,
the use of white space (tab), placing of the braces.

Lexical features can be divided into programming style
metrics, programming structure metrics and 𝑛-grams. Pro-
gramming style metrics include character preferences, con-
struct preferences, statistical distribution of variable lengths,
and capitalisation. Programming structure metrics are as-
sumed to be related to the programming experience and
ability of a developer. For example, such metrics include
the statistical distribution of lines of code per function, the
ratio of keywords per line of code, the relative frequency of
use of complex branching constructs and so on. A popular
feature extraction technique is using 𝑛-grams to extract the
frequency of sequences of 𝑛-characters from the source code.

Syntactic features are good features for authorship iden-
tification in natural language [18]. A parse tree is a convenient
way to determine the syntactic structure of a sentence [23].
Baayen et al. [5] are the first to extract rewrite-rule fre-
quencies from the parse tree for the purpose of authorship
identification.

Recently, syntactic features have shown significant success
also in source code authorship [4, 11]. These features repre-
sent the code structure and are invariant to changes in source
code layout. Moreover, these features often describe proper-
ties of the language dependent AST (abstract syntax tree)
such as code length, nesting levels, branching. AST does not
include layout elements, such as unessential punctuation and
delimiters (braces, semicolons, parentheses, etc.). Caliskan et
al. [11, 12] investigated syntactic features to de-anonymize
authors of C/C++ both at the source code and binary code
level. They published the Code Stylometry Feature Set which
includes layout, lexical and syntactic features. They have
already achieved 94%, 96.83% and 97.67% accuracy with
1, 600, 250 and 62 class authors respectively. Recently Alsu-
lami et al. [4] proposed Long Short-Term Memory (LSTM)
and Bidirectional Long Short-Term Memory (BiLSTM) mod-
els to automatically extract relevant features from the AST
representation of programmers’ source code.

Control-flow features have been used in binary code
attribution [3] and are not typical for source code attribution.
These features are derived from control flow graph (CFG) that
describes the order in which the code statements are executed
as well as conditions that need to be met for a particular path
of execution. Statements and predicates are represented by
nodes, which are connected by directed edges to indicate the
transfer of control. In binary authorship analysis graphlets
(3-node subgraphs of the CFG) and supergraphlets (obtained
by collapsing and merging neighbour nodes of the CFG) are
used to identify the author of the code [3].

Data-flow features may indicate the author’s preference
in resolving a particular task through the selection of algo-
rithms, certain data structures. These features are derived
from the program dependence graph (PDG) that determines
all the statements and predicates of a program that affect
the value of a variable at a specific program point. It was in-
troduced by Ferrante et al. [15] and it was originally used for
program slicing [30]. In binary authorship analysis, Alrabaee

et al. [3] used API data structures for this task. For binary
code representation, authors analyzed the dependence be-
tween the different registers that are often accessed regardless
of complexity of functions.

The arrows in Figure 1 represent our observations of feature
selection influence on the authorship attribution accuracy
and their strength of obfuscation. Layout features are associ-
ated with layout of programs and thus are fragile and easily
alterable, for example by a code formatter. Lexical features
are also related to the layout of code but are more difficult
to change. Layout and lexical features alone are still less ac-
curate (67.2% by [14] ), than when used in combination with
syntactic features (92.83% by [11]). Most of these features
do not survive the compilation process. On the other hand,
control-flow and data-flow features that retain programming
ability and the experience of the programmer, are considered
to provide a stronger evidence of developer’s style. The ex-
isting source code attribution techniques only employ the
combination of layout, lexical and syntactic features. In this
work we focus on author imitation and hiding attacks at the
layout, lexical, syntactic and control-flow levels.

3 AUTHOR IMITATION

The majority of previous studies show that we can successfully
identify a software developer of a program. The question that
naturally arises from this situation is whether it is possible
to mimic someone else’s coding style to avoid being detected
as an author of our own software. In other words, can we
pretend to be someone else?

Author imitation attack aims at deceiving existing author-
ship attribution techniques. The flow of the attack is shown
in Figure 2 and includes three steps: (1) collecting victim’s
source code samples, (2) recognizing the victim’s coding style,
(3) imitating the victim’s coding style. The pseudocode for
this attack is given in Algorithm 1.

The attack starts with identifying a victim and retrieving
samples of his/her source code 𝑉𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛). Typically,
authors of open-source software hide their identity through
nicknames and avatars. However, many GitHub accounts
leave personal developer’s information open, essentially al-
lowing an attacker targeting a particular person collect the
victim’s source code samples.

Once the samples are collected, the second step is to ana-
lyze them and identify the victim’s coding style. The strategy
is to apply a set of transformations 𝑀𝑖,𝑗(𝐴) to the set of
source code samples 𝐴 = (𝑡1, 𝑡2, ..., 𝑡𝑘) until the difference
between the original victim style 𝑉 and the modified attacker
style is negligible.

The set of transformations 𝑀𝑖,𝑗 is defined on the major
feature levels 𝑖 given in Figure 1, e.g., layout (𝑖 = 1), lexical
(𝑖 = 2), syntactic (𝑖 = 3), control-flow (𝑖 = 4), data-flow
(𝑖 = 5). The particular transformation 𝑗 for each of the feature
levels can vary. An example set of possible transformations
is given in Table 2.

The distance between the feature vector extracted from
the original source code of victim 𝑉 and the feature vector
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Figure 2: An overview of author imitation attack

extracted from the modified source code of 𝐴 is determined
based on cosine similarity1, a widely implemented metric in
information retrieval that models data as a vector of features
and measures the similarity between vectors based on cosine
value.

Definition 3.1 (Cosine similarity for author imitation at-
tack). In authorship attribution, a source code can be repre-
sented as a vector of features whose dimension 𝑝 depends on
the considered feature set. Feature’s value can refer to term
frequency, average, log, or anything else depending on the
features used.

Let 𝑠𝑛 =
−−−−−−−−−−−−−→
(𝑠𝑛,1, 𝑠𝑛,2, ..., 𝑠𝑛,𝑝) denote the feature vector of

the 𝑛-th source code of victim 𝑉 , and let 𝑡𝑘 =
−−−−−−−−−−−−→
(𝑡𝑘,1, 𝑡𝑘,2, ..., 𝑡𝑘,𝑝)

denote the feature vector of the 𝑘-th source code of attacker
𝐴, where 𝑠𝑛,ℎ and 𝑡𝑘,ℎ with ℎ ∈

−−−→
(1, 𝑝) are float numbers indi-

cating the value of a particular feature. The cosine similarity
between 𝑠𝑛 and 𝑡𝑘 is defined as follows:

𝐶𝑜𝑠𝑆𝑖𝑚(𝑠𝑛, 𝑡𝑘) =
𝑠𝑛·𝑡𝑘

||𝑠𝑛||·||𝑡𝑘||
=

√∑︀𝑝
ℎ=1

𝑠𝑛,ℎ·𝑡𝑘,ℎ√∑︀𝑝
ℎ=1

(𝑠𝑛,ℎ)2·
√∑︀𝑝

ℎ=1
(𝑡𝑘,ℎ)2

Similarity is measured in the range 0 to 1. 𝐶𝑜𝑠𝑆𝑖𝑚 = 1
if two vectors are similar, 𝐶𝑜𝑠𝑆𝑖𝑚 = 0 if two vectors are
different.

The code transformations 𝑀𝑖,𝑗 that produce the maximum
similarity, i.e. 𝐶𝑜𝑠𝑆𝑖𝑚(𝑉𝑠,𝑀𝑖,𝑗(𝐴𝑡)) → 𝑚𝑎𝑥, are the ones
that the attacker should use to transform the original code in
order to obtain a semantically equivalent code that mimics
the victim’s coding style. Note that these transformations
should be calculated once per victim and can be applied on
any of attacker’s programs.

1For our analysis we experimented with a variety of similarity measures
including Euclidean distance, Cosine distance, Minkovski distance,
Jaccard distance, and Manhattan distance. Since Cosine similarity
outperformed all other metrics, we employ it in our work.

Finally, to imitate the victim 𝑉 , the attacker recursively
applies the transformations identified in the previous step to

𝐴*, i.e., 𝐼𝑚(𝑉,𝐴*) = 𝑀𝑖,𝑗𝑖(𝐴
*).

Algorithm 1 Author imitation attack

Input: 𝑉𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛) -victim’s source code samples;
𝐴𝑡 = (𝑡1, 𝑡2, ..., 𝑡𝑘) -attacker’s source code samples;
𝐴* = (𝑚1,𝑚2, ...,𝑚𝑙) -attacker’s any source codes

Output: 𝐼𝑚(𝑉,𝐴*) -attacker’s source codes 𝐴* with imitated vic-
tim’s 𝑉 coding style
# precomputation part
for all 𝑖 = 1 to 5 do

for all 𝑗 do
apply transformation 𝑀𝑖𝑗 to each 𝐴𝑡

compute 𝜃(𝑖, 𝑗) =
∑︁
𝑠

∑︁
𝑡

𝐶𝑜𝑠𝑆𝑖𝑚(𝑉𝑠, ⃗𝑀𝑖𝑗(𝐴𝑡))

end for
take 𝑗 such that 𝜃(𝑖, 𝑗) is maximum

end for
return pairs (𝑖, 𝑗𝑖)

5
𝑖=1 and their correspondent transformations

𝑀𝑖, 𝑗𝑖
# main part
for all 𝐴* do
apply 𝑖 transformations 𝑀𝑖, 𝑗𝑖 to attacker’s source code 𝐴* re-

cursively: 𝐼𝑚(𝑉,𝐴*) = 𝑀𝑖,𝑗𝑖
(𝐴*), where 𝑀𝑖,𝑗𝑖

(𝐴*) is a recursive

function such as: ˜𝑀𝑖+2,𝑗𝑖+2
(𝐴*) = ˜𝑀𝑖+1,𝑗𝑖+1

(̃𝑀𝑖,𝑗𝑖
(𝐴*))

end for
return 𝐼𝑚(𝑉,𝐴*)

Complexity. The attack described in Algorithm 1 con-
sists of a precomputation step and a main phase. In the
precomputation step the algorithm searches for the code
transformations that once applied to the attacker’s source
code samples transform the attacker’s coding style into the
victim’s coding stile. The complexity of this step depends on
the number of specific transformations defined for each of
the five feature levels. It should be noted that these trans-
formations only need to be determined once per victim. The
main phase consists of applying selected transformations to
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an attacker’s source code. The time complexity of this phase
grows linearly as the size of the attacker’s code increases.

4 AUTHOR HIDING

To subvert author imitation attack, we propose a method
that manipulates the source code to hide author’s coding
style while preserving code readability. The goal of author
hiding is to prevent its detection by authorship attribution
systems.

The author imitation attack applies transformations to
the attacker’s source code in order to imitate the victim’s
style. The most effective imitation can be generated when the
distance between the source code feature vector of the victim
and the modified source code feature vector of the attacker
is negligible, i.e., transformations produce the maximum
similarity between the two vectors.

Intuitively, to make author imitation attack unsuccessful,
we should convert the original author’s style to more generic
less personalized version of it while fully retaining the func-
tionality of code, i.e., these transformations should produce
minimal similarity between the feature vector of the original
and modified author source code. The pseudocode of author
hiding is given in Algorithm 2.

In this work, we look at transformations at the layout,
lexical, syntactic levels as features from these levels are com-
monly explored by attribution studies. Specifically, we classify
all the transformations into the following groups: comment,
brackets, spaces, lines, names, AST leaves, loops, and condi-
tional statements. These transformations are low-cost and can
be applied on any software with no computational overhead.

We additionally explore control flow transformation i.e.
control-flow flatenning [29]. Control-flow flatenning rearranges
code basic blocks (e.g., method body, loops, and conditional
branch instructions) to make them appear to have the same
set of predecessors and successors. Although a modified pro-
gram flow is harder to follow, it is still readable for a human
analyzer (Figure 3), which makes it suitable to use for our
hiding approach. McCabe’s complexity metric of such trans-
formation is increased by a factor 2 to 5, which was shown
by [21].

5 EVALUATION

Data. For our analysis, we collected two datasets from
open source repositories. The majority of the existing attri-
bution studies leverage programs developed during Google-
CodeJam, an annual international coding competition hosted
by Google. During this competition, the contestants are
presented with several programming problems and need to
provide solutions to these problems within a limited time
frame. We follow this practice and collect source code written
in the Java programming language from the GoogleCode-
Jam held in 2015. Our GoogleCodeJam dataset contains 558
source code files from 62 programmers. Each program has
on average 74 lines of source code. Although GoogleCode-
Jam is commonly used in studies, it has seen its share of
criticism [12, 13, 22]. Specifically, the researchers argue that

Algorithm 2 Author hiding

Input: 𝑉𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛) - author’s 𝑉 source code samples;
𝑉 * = (𝑣1, 𝑣2, ..., 𝑣𝑛) - code, which author 𝑉 wants to hide

Output: 𝐻𝑖𝑑𝑒(𝑉 *) - source code without author’s 𝑉 style
# precomputation
for all 𝑖 = 1 to 5 do

for all 𝑗 do
apply transformation 𝑀𝑖𝑗 to each 𝑉𝑠

compute 𝜃(𝑖, 𝑗) =
∑︁
𝑠

𝐶𝑜𝑠𝑆𝑖𝑚(𝑉𝑠, ⃗𝑀𝑖𝑗(𝑉𝑠))

end for
take 𝑗 such that 𝜃(𝑖, 𝑗) minimum

end for
return pairs (𝑖, 𝑗𝑖)

5
𝑖=1 and their correspondent transformations

𝑀𝑖, 𝑗𝑖
# hiding
for all 𝑉 * do
apply 𝑖 transformations 𝑀𝑖, 𝑗𝑖 to author’s source code 𝑉 * recursively:

𝐻𝑖𝑑𝑒(𝑉 *) = 𝑀𝑖,𝑗𝑖
(𝑉 *), where 𝑀𝑖,𝑗𝑖

(𝑉 *) is a recursive function

such as: ˜𝑀𝑖+2,𝑗𝑖+2
(𝑉 *) = ˜𝑀𝑖+1,𝑗𝑖+1

(̃𝑀𝑖,𝑗𝑖
(𝑉 *))

end for
return 𝐻𝑖𝑑𝑒(𝑉 *)

competition setup gives little flexibility to participants re-
sulting in somewhat artificial and constrained program code.
The length of the code in GoogleCodeJam dataset is much
smaller when compared with real-world programming solu-
tions, which creates bias by making it easier to attribute
programs and consequently leading to higher attribution
accuracy.

To ensure the reliability of our analysis, we created sec-
ond dataset with code samples from the popular open-source
repository Github. Github is an online collaboration and
sharing platform for programmers. Compared to the Google-
CodeJam dataset, the programs are typically more complex,
can include third-party libraries and use source code from
other authors. As a result, performing authorship attribution
on GitHub data is more challenging. We crawled the GitHub
in April 2018. Although it is difficult to guarantee a sole
authorship of any code posted online, we took reasonable pre-
cautions. We filtered repositories that were marked as forks,
as these are typically copies of other authors’ repositories
and so do not constitute original work. An additional check
for multiple-author repositories was performed by examining
the commit logs: if there were more than one unique name
and email address combination, the repository was excluded.
We further removed code from “lib” and “ext” folders and
duplicate files. Overall, our final GitHub dataset included
558 source code files from 62 programmers with 303 lines
of code per program on average. To understand what were
the semantics of the programs in the GitHub dataset, we
used a combination of automated and manual techniques.
The projects in GitHub come with project description and
README. We used Latent Dirichlet Allocation (LDA) [7]
to analyze this textual description. By specifying a set of
documents, LDA recognizes a set of topics where each topic
is represented as probability of generating different words.
Using existing domain names for categorization of GitHub
projects [24], our final collection contains Application (352),
Database (0), CodeAnalyzer (32), MiddleWare (0), Library
(11), Framework (132), Other (31).
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Figure 3: Control-flow flatenning obfuscation

Features. In spite of the wealth of attribution studies in
the literary domain, throughout the years only a few source
code attribution techniques were proposed. The majority of
these studies experiment with diverse sets of features that
capture developers’ stylistic traits. These feature sets often
range in size and level of analysis which makes it difficult
to compare them. Burrows et al. [10] suggested grouping
attribution systems by the type of features used in analysis:
strings of 𝑛 tokens/bytes (𝑛-grams) or software metrics.

In this work we aim at exploring the accuracy of four
prominent attribution systems from both categories and their
potential to be attacked. In particular, we investigate the
Ding et al. [14] and Caliskan et al. [11] systems that use
feature sets based on software metrics, and the Burrows et
al. [8] and Kothari et al. [19] attribution approaches based
on 𝑛-grams features.

The study conducted by Ding et al. [14] is state-of-art
research in Java source code attribution. The feature set and
the obtained results serve as a reference for many studies [10].
Ding et al. collected and analysed 56 features and considered
two datasets containing samples of 46 authors; the highest
classification accuracy they obtained is 67.2%. Although not
all features contributed to this result, the authors never
provided the final subset or ranking of features. This was
corrected by the follow-up study by Burrows et al. [10] that
summarized previous classification techniques, and provided
a final feature set of 56 metrics from the Ding et al. study.
In our work, we use this feature set and refer to it as Ding
features.

Another feature set that we explore is the one recently
proposed by Caliskan et al. [11]. The study experimented
with syntactic features (specifically, features derived from the
AST) in an attribution context and published the Code Sty-
lometry Feature Set. The results significantly outperformed
all previously proposed attribution methods. For convenience
we refer to this set as Caliskan features. With the dataset
containing 250 authors and 9 samples per author, the study
reported an attribution accuracy of 96.83%. Another dataset
with 62 authors with 9 samples per author gave them an
accuracy of 97.67% with Random Forest classification.

To give a fine granularity to our analysis, we created one
more feature set. The Code Stylometry Feature Set (CSFS)
analysed by Caliskan et al. [11] also includes term frequency
of word unigrams. The authors tokenized the source file to
obtain the number of occurrences of each token. Since these
features constitute a significant portion of the original CSFS
set (nearly half of the whole feature set), we consider them
separately and refer to these features as TFunigrams. TFuni-
grams consist of term frequency of variable names, methods,
classes, strings, comments, import names, etc. For each of the
datasets we parsed the source codes to extract necessary sets
of features. Since the study of Caliskan et al. [11] considers
C++ and Python source code, we reimplemented their attri-
bution model for Java source code. To produce AST, we use
the external JavaParser library [28]. We created a parser to
extract all the AST features specified in the Caliskan feature
set. Following their method we reduced the total size and
sparsity of the feature vector, by retaining only those features
that individually have non-zero information gain. Information
gain considers the difference between the entropy of the dis-
tribution classes and the entropy of conditional distribution
of classes [31].

The study by Burrows et al. [8] uses indexed 𝑛-grams of
tokens extracted from the parsed program source code. Their
study identifies 6-grams as the most accurate 𝑛-gram size. In
their follow up study [10], they explored normalised counts
of 𝑛-gram occurrences as features with machine learning
classifiers. Since the number of features to process increases
exponentially for 𝑛-grams of features, they truncate the fea-
ture space to the most commonly occurring 𝑛-grams. In
our work we use this feature set and refer to it as Burrows
features.

Kothari et al [19] consider two sets of metrics. The first
set of metrics consists of layout metrics, for example, distri-
butions of leading spaces, line length, etc. The second metric
set measures occurrences of byte-level 𝑛-grams. The 𝑛-gram
length 𝑛 = 4 is derived empirically. They use entropy to iden-
tify the fifty most discerning metrics for each author. In our
work we use this feature set and refer to it as Kothari features.
Burrows et al. [10] in their analysis of several attribution
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Feature set Number of
authors

Samples/
author

L O C Total
number

Selected
features

Layout Lexical Syntactic Random
Forest

Naive
Bayes

J48 IBk

Original work
Ding features 76 6 250 56 56 16 40 0 - 64.05% 66.17% 39.75%
Caliskan features 62 9 70 - - 6 - - 97.67% - - -
Burrows features 76 6 250 - 1000 0 1000 0 - 73.24% 56.61% 37.01%
Kothari features 76 6 250 - 168 - - 0 - 67.45% 74.70% 49.26%
GoogleCodeJam data set
Ding features 62 9 74 56 56 16 40 0 73.84% 58.42% 59.86% 51.25%
Caliskan features 62 9 74 38630 607 6 187 414 97.31% 95.88% 91.03% 97.13%
TFunigrams features 62 9 74 20544 190 0 190 0 96.95% 95.69% 90.5% 93.01%
Burrows features 62 9 74 54267 1000 0 1000 0 73.29% 58.96% 64.87% 70.25%
Kothari features 62 9 74 34308 147 0 147 0 86.56% 79.92% 70.96% 81.99%
GitHub data set
Ding features 62 9 303 56 56 16 40 0 67.25% 57.11% 54.62% 52.14%
Caliskan features 62 9 303 224478 687 5 203 479 80.92% 74.56% 78.12% 79.56%
TFunigrams features 62 9 303 87229 199 0 199 0 75.08% 67.79% 69.93% 66.01%
Burrows features 62 9 303 230735 1000 0 1000 0 69.56% 61.23% 66.34% 65.67%
Kothari features 62 9 303 116517 325 0 325 0 80.23% 72.78% 77.54% 79.52%

Table 1: The details of our datasets and feature sets employed by previous studies.

studies identified the Kothari features as the best in terms of
classification accuracy; therefore the authors claimed that the
𝑛-gram approaches are more effective than the ones utilizing
software metrics (note that at that time the work by Caliskan
et al. [11] was not published yet). Since these studies work
with source code developed with different programming lan-
guages (Java[14], C++, Python [11], and C, C++, Java [10]),
in our work we bring everything to a common enumerator
and employ Java programming language source code.

Table 1 shows statistics for the extracted features: number
of authors, number of samples per author, average samples
size in lines of code (LOC), the total number of features, the
number of selected features, the number of layout, lexical, syn-
tactic features on different datasets and original classification
accuracy results reported by authors.

Classification. The previous approaches to source code
authorship attribution employ various classification algo-
rithms for attribution analysis while providing no justification
of their algorithm’s selection. Caliskan et al. [11] utilized Ran-
dom Forest classifier, Burrows et al. [10] used Naive Bayes,
Decision Tree, 𝑘-nearest neighbour classification, neural net-
work, regression analysis, support vector machine, and voting
feature interval.

For our analysis we employ Weka 3.8.2 platform [16]. Since
our datasets do not have extensively large number of in-
stances, we use the Weka implementation of Random Forest
(RandomForest), Naive Bayes (NaiveBayes), J48 decision tree
implementation of ID3 and IBk implementation of 𝑘-nearest
neighbour algorithm. Since Burrows et al. [10] retained de-
fault parameters, for proper comparison we follow the same
practice and do not change configuration for NaiveBayes,
J48, IBk. For RandomForest algorithm, we chose 300 as the
number of trees following the configuration used by Caliskan
et al. [11]. All our experiments are performed with 9 fold
cross validation.

5.1 Evaluation of existing authorship
attribution methods

The results reported in Table 1 allow us to compare different
authorship attribution methods on the GoogleCodeJam and
GitHub datasets. The results that we obtain with the Caliskan

feature set for the Java programs from GoogleCodeJam are
similar to the ones originally obtained for C/C++ programs
(97.31%) by Caliskan et al. [11].

Interestingly, the accuracy of this technique drops signif-
icantly (80.92%) on the GitHub dataset even though the
number of features used in the analysis is 5.8 times bigger
compared to the GoogleCodeJam dataset. We observe the
same tendency with the TFunigrams feature set (that rep-
resents a significant amount of the Caliskan feature set) for
which we have an accuracy of 96.95% on the GoogleCodeJam
dataset and of 75.08% on the GitHub dataset. For the rest
of the feature sets, Ding, Burrows and Kothari, the accuracy
varies depending on the employed classification algorithm.

The difference in classification accuracy might be caused
by the size of the source code in the dataset. The work
of Caliskan et al. [11] considers only the GoogleCodeJam
dataset, where each sample has on average 70 lines of code,
while in real-world applications the programs are typically
much larger. Indeed, the average number of lines of the
samples in our GitHub dataset is 303 (4 times larger than
the ones in the GoogleCodeJam considered by [11]).

An interesting observation came from the nature of the
GoogleCodeJam competition that essentially forces authors
to reuse their code written for previous tasks. As a result
individual authors’ style is derived from a set of very similar
programs which significantly simplifies the attribution task.

The Code Stylometry Feature Set developed by Caliskan
et al. was reported to “significantly outperform” other meth-
ods [11]. Yet our analysis does not agree with this; for ex-
ample, with Kothari features we were able to achieve very
similar results on Github data (80.23%) with a significantly
smaller number of features. Since the Code Stylometry Fea-
ture Set of Caliskan et al. was designed solely based on the
experiments on the GoogleCodeJam data, its suitability for
real-world attribution is not definitive.

These results show that applying the attribution methods
on different datasets leads to significantly different classifica-
tion rates. Yet the majority of studies in attribution domain
tend to only use the GoogleCodeJam data [3, 11, 25]. In
spite of GoogleCodeJam data criticisms, an alternate dataset
does not readily exist. We offer GitHub data to research
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community in the hope of diversifying and strengthening
experiments in this field2.

Our results in Table 1 show that RandomForest classifier
performs the best for both datasets. For this reason we use
the RandomForest classifier in the rest of our experiments.

5.2 Author imitation evaluation

For the evaluation of the author imitation attack, we consider
the features sets and datasets detailed in Table 1. We focus
on layout (comments, brackets, spaces, lines), lexical (names),
syntactic (AST leaves), control-flow feature groups in this
analysis. Specific transformations that are considered for
these groups are given in Table 2.

Type Name
Comments 1. Transform all comments to Block comments; 2. Trans-

form all comments to Javadoc comments; 3. Transform all
comments to Line comments; 4. Transform all comments
to pure comment lines 5. Delete all inline comments; 6.
Delete all pure comment lines; 7. Delete all comments; 8.
Add pure comments on each line; 9. Add inline comments
on each line; 10. Add pure comments on each line and one
inline comments

Brackets 1. Transform all brackets to Allman style; 2. Transform
all brackets to Java style; 3. Transform all brackets to
Kernighan and Ritche style; 4. Transform all brackets to
Stroustup style; 5. Transform all brackets to Whitesmith
style; 6. Transform all brackets to VTK (Visualization
toolkit) style; 7. Transform all brackets to Banner style;
8. Transform all brackets to GNU style; 9. Transform
all brackets to Linux style; 10. Transform all brackets to
Horstmann style; 11. Transform all brackets to ”One True
Brace Style”; 12. Transform all brackets to Google style;
13. Transform all brackets to Mozilla style; 14. Transform
all brackets to Pico style; 15. Transform all brackets to
Lisp style

Spaces 1. Indent using (from 2 to 20) number of spaces per indent;
2. Indent using tabs for indentation and spaces for contin-
uation line alignment; 3. Indent using all tab characters, if
possible;4. Indent using mix of tabs and spaces; 5. Insert
space padding around operators; 6. Insert space padding
after only commas; 7. Insert space padding around paren-
thesis on both outside and the inside; 8. Insert space
padding around parenthesis on the outside only; 9. Insert
space padding around parenthesis on the inside only; 10.
Insert space padding between ’if’, ’for’, ’while’; 11. Re-
move extra space padding around parenthesis; 12. Remove
all space/tabs padding

Lines 1. Delete empty lines within a function or method; 2.
Delete all emty lines; 3. Write each statement in one line;
4. Write several statements in one line; 5. Write one dec-
laration per line; 6. Write several declarations in one line;
7. Add emty line after each nonempty line

Names 1. Change all names on extremely short name identifiers
(one-two characters); 2. Use dictionary to change names
to long names (8-10 characters); 3. Change the first letter
in identifiers to uppercase; 4. Change the first letter to
lowcase; 5. The first sign is underscore/dollarsign

AST leaves 1. Copy and insert all comments from imitated author;
2. To imitate the author B, change all name identifiers
(methods names, variable names, class names) to the
same names used in author B’ source code; 3. All names
are unigue for every author (use different dictionaries to
change the names); 4. Use the same dictionary to change
names for every author

Control-flow 1. Change ”for” to ”while” loop 2. Change ”while” to
”for” loop 3. Change ”else if” to ”switch case” 4. Change
”switch case” to ”else if” 5. Control-flow flatenning (for
author hiding only)

Table 2: Applied transformations

The idea of the evaluation is simple: we consider each
author in our dataset as a potential victim and we mount
an author imitation attack on the chosen victim from all

2https://cyberlab.usask.ca/authorattribution.html

other authors (aka attackers). If the attack is successful, all
attackers should be recognized as the chosen victim author.

The methodology of the evaluation of the attack is pre-
sented in Algorithm 3.

Let 𝑛 be the number of authors in the dataset𝐴1, 𝐴2, ..., 𝐴𝑛,
for every author we collect 𝑚 samples of code: 𝑠(𝐴1), 𝑠(𝐴2),
..., 𝑠(𝐴𝑛) and extract feature vectors from every source code:
−−−→
𝑠(𝐴1),

−−−→
𝑠(𝐴2), ...,

−−−→
𝑠(𝐴𝑛). In the transformation, recognition

and imitation steps, we use only feature vectors of source code
that belongs to the testing set. We then apply Algorithm 1
to imitate each author in the dataset.

Specifically, we take one author (victim 𝑉 ), e.g. 𝑉 = 𝐴1,
leaving the remaining 𝑛 − 1 authors 𝐴* = (𝐴2, 𝐴3, ..., 𝐴𝑛)
to represent adversaries who want to imitate the victim’s
style. After applying Algorithm 1, we obtain 𝑛 − 1 sam-
ples of attackers’ source code with the imitated victim’s
style: 𝐼𝑚(𝑉,𝐴*) = 𝐼𝑚(𝐴1, 𝐴2), ..., 𝐼𝑚(𝐴1, 𝐴𝑛). We use a
similar method to imitate each author/victim in the dataset:
𝐴2,...𝐴𝑛.

Algorithm 3 Imitation attack evaluation

Input: Dataset of 𝑛 authors 𝐴𝑤 with their source code samples 𝑠(𝐴𝑤),

where 𝑤 ∈
−−−→
(1, 𝑛), 𝑘-number of folds for cross-validation method

Output: accuracy of correctly classified authors 𝜉
# precomputation
for all 𝑤 do

find feature vectors
−−−−→
𝑠(𝐴𝑤) extracted from each source code sam-

ples 𝑠(𝐴𝑤) by using any known authorship attribution feature ex-
traction methods (i.e. [10], [11], etc.)

return feature vectors
−−−−→
𝑠(𝐴𝑤)

end for
# main part
for all 𝑘 do

divide dataset on training and testing set:

𝑇𝑅𝐴𝐼𝑁 = (
−−−−−→
𝑠𝑖,𝑘(𝐴1),

−−−−−→
𝑠𝑖,𝑘(𝐴2), ...,

−−−−−−→
𝑠𝑖,𝑘(𝐴𝑛))

𝑇𝐸𝑆𝑇 = (
−−−−−→
𝑠𝑗,𝑘(𝐴1),

−−−−−→
𝑠𝑗,𝑘(𝐴2), ...,

−−−−−−→
𝑠𝑗,𝑘(𝐴𝑛))

apply imitation attack on every author 𝑛’s source code from
TEST set to get 𝑇𝐸𝑆𝑇𝐼𝑚

𝑓𝑜𝑙𝑑(𝑘) = 𝑁𝑁(𝑇𝑅𝐴𝐼𝑁, 𝑇𝐸𝑆𝑇𝐼𝑚)
end for

𝑇𝐸𝑆𝑇𝐼𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
𝐴1

−−−−−−−−−→
𝐼𝑚(𝐴1, 𝐴2)

−−−−−−−−−→
𝐼𝑚(𝐴1, 𝐴3) . . .

−−−−−−−−−→
𝐼𝑚(𝐴1, 𝐴𝑛)

−−−−−−−−−→
𝐼𝑚(𝐴2, 𝐴1)

−→
𝐴2

−−−−−−−−−→
𝐼𝑚(𝐴2, 𝐴3) . . .

−−−−−−−−−→
𝐼𝑚(𝐴2, 𝐴𝑛)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−−−−−−−−−→
𝐼𝑚(𝐴𝑛,𝐴1)

−−−−−−−−−→
𝐼𝑚(𝐴𝑛,𝐴2)

−−−−−−−−−→
𝐼𝑚(𝐴𝑛,𝐴3) . . .

−→
𝐴𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜉 =
∑︁
𝑘

𝑓𝑜𝑙𝑑(𝑘)/𝑘

At the end we move feature vectors from 𝐼𝑚(𝐴𝑖, 𝐴𝑗) to
the testing set 𝑇𝐸𝑆𝑇𝐼𝑚, so that we have 𝑚2 * 𝑛 * 𝑛 feature
vectors in the testing set 𝑇𝐸𝑆𝑇𝐼𝑚. The evaluation then
proceeds to classification to find the closest match among
all authors for a given source code. In an ideal situation,
we expect the closest match to be the imitated author. The
accuracy is calculated as an average attribution rate after
𝑘 fold cross validation. This approach allows us to test the
author imitation attack on different scenarios, using different
𝑛 coding styles for imitation and 𝑛 styles to be imitated.

We employ all or nothing approach. Consider an example:
we have 3 authors in the dataset: 𝐴1, 𝐴2, 𝐴3, with 5 samples
each. Take 𝐴1 - if all 𝐴2 and 𝐴3 samples (i.e. all 10 samples)
were attributed to 𝐴1, then accuracy of imitating 𝐴1 is 100%.
Take 𝐴2 - if all samples from 𝐴3 were recognized as 𝐴2,
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Dataset Ding

features

Caliskan

features

Burrows

features

Kothari

features

TFunigrams

features

GCJ 53.4% 73.48% 100% 99.8% 100%

GitHub 40.86% 68.1% 100% 97.85% 100%

Table 3: Percentage of successfully imitated authors

but one sample from 𝐴1 was still attributed to 𝐴1, this
means that only one author (𝐴3) was successfully imitating
𝐴1, hence the accuracy is 50%. Take 𝐴3 - if all samples
from 𝐴1 were recognized as 𝐴3, and only 3 samples from
𝐴2 were recognized as 𝐴3, the accuracy of imitation of 𝐴3

is 50%. Finally, we average the results across all authors:
(100+50+50)/3 = 66.67% the accuracy after author imitation
attack.

Table 3 presents the result of our evaluation. With Ding
features we could imitate 40.86% of the Github authors and
53.4% of the GoogleCodeJam (GCJ). This result is expected
as Ding’s set is very small, only 56 features, thus they do not
use any feature selection algorithm. With transformations
from Table 2 we were able to imitate 32 features of 56. The
rest of features are dependent to data-flow for example Java’s
primitive and user-defined types, fields, methods, generic
parameters, and exceptions.

Using Caliskan features, more than half of the authors in
Github dataset (68.1%) and in GoogleCodeJam (73.48%) are
imitated successfully.

Better results were obtained with features of TFunigrams,
and Burrows features: 100% for Github users and 100% for
GoogleCodeJam. Since all features in this set are lexical,
and require only undergo transformation, the result is nearly
perfect, i.e., we are able to successfully mount an imitation
attack on all users.

5.3 Author hiding evaluation

To evade author imitation attack, one could possibly use code
formatting to produce a more generic less personal version
of code. Alsulami at al. [4] stated that “Modern IDEs for-
mat source code file content based on particular formatting
conventions. This results in consistent coding style across all
source code written using the same development tools. This
reduces the confidence of using format features to identify the
authors of source code.” Indeed, many software development
standards dictate formatting style that developers have to
adhere to. We hypothesize that the use of a particular style
alone is not sufficient to avoid attribution. Figure 4 shows
our preliminary experiments with several different types of
formatting: Beautify, Java Code Convention, PrettyPrinter
using the Eclipse Code Formatter. It indicates that attribu-
tion accuracy does not produce significant change after using
such formatting tools. We could still attribute nearly half of
the authors with the Ding feature set and more than 70% of
the authors with other feature sets. After manual analysis
of our data, we found that near 80% authors in our datasets
were already following Java Code Convention.

Our goal is to offer a source code obfuscation technique that
preserves the readability of the code and misleads existing
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Figure 4: Percentage of correctly classified authors
after using the following formatting: Beatify, Code
Convention and PrettyPrinter on original source
code

authorship attribution tools. We have seen that the existing
methods for authorship attribution leverage layout and lexical
features (Ding and Kothari) or layout and lexical, syntactic
(Caliskan) or just lexical features (Burrows and TFunigrams).

In addition to these features, we also look at transforming
control flow of a program. Although specific transformation
can vary depending on the goal of the analysis, in this study
we experimented with the transformations specified in Ta-
ble 2.
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Figure 5: Percentage of correctly classified authors
after brackets transformation for Google Code Jam
dataset

For example, in the group brackets, we explore all possible
styles of curly brackets (parentheses) that a developer can
use. Figure 5 shows the results of experiments with only
transformation of brackets in the code. We use 11 different
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styles of brackets. By changing the bracket style to pico
(the most rarely used by developers), we are able to reduce
the attribution rate for the Ding feature set from 73.84% to
11.29%. The worst result is obtained with Java style (66.84%),
this implies that most authors in our dataset use Java style.
When considering the Caliskan feature set, the accuracy
results do not change much and are still around 97%. This is
due to the fact that the layout features make up only 1% of
the Caliskan set after information gain feature selection.

We define ”HideByCosine” obfuscation as following:

Definition 5.1 (“HideByCosine” obfuscation). Let 𝑃 → 𝑃 ′

be a transformation of a source program 𝑃 into a target
program 𝑃 ′. In order for 𝑃 → 𝑃 ′ to be a “HideByCosine”
obfuscation the following steps should be applied:

∙ Apply a set of transformations 𝑇 on program 𝑃

∙ Select those transformations so that 𝐶𝑜𝑠𝑆𝑖𝑚(⃗𝑎, �⃗�) →
𝑚𝑖𝑛, where �⃗� is the feature vector of the original pro-

gram and �⃗� is the feature vector of the modified pro-
gram.

The setup of our experiment for ”HideByCosine” is similar
to that of an imitation attack; we train RandomForest classi-
fier on the non-obfuscated code and test it on the obfuscated
one.

The results of the evaluation process for ”HideByCosine”
are reported in Table 5. When using only layout, lexical,
syntactic and control-flow obfuscation we are able to achieve
1.43% attribution rate after applying author hiding attack
for the Ding feature set. The transformations are unique for
each author. With the Caliskan feature set we drop accuracy
from 97.31% to 39.43% for the GoogleCodeJam dataset and
from 80.92% to 27.96% for the GitHub dataset. This is due
to the fact that the Caliskan et al. system uses information
gain to select the most informative features, most of which
are term frequency of unigrams and leaves ( near 87% for
GoogleCodeJam and GitHub) which can be easily obfuscated
by name obfuscation. Table 4 shows the statistics of Caliskan
features after information gain feature selection. The next
group is AST nodes and AST node bigrams features (two
AST nodes that are connected to each other), which only
represent 12%, and are part of control-flow features. A portion
of them can be obfuscated with simple transformations, e.g.,
changing ”for” to ”while” loops, and ”else if” to ”switch case”,
and do not guarantee author style’s hiding. Therefore we
applied control-flow flatenning (+CFF) on the top. After such
transformations 0% of authors can be successfully attributed
by Caliskan et al. and Ding et al. attribution systems.

Note that our result differs from what what reported in
the Caliskan et al. work. [11]. The authors claimed that their
method is resistant to simple obfuscation such as provided by
Stunnix [1] with the reported accuracy of 98.89%, and to more
sophisticated obfuscation (such as function virtualization by
Tigress obfuscator [2]) with 67.22% on GoogleCodeJam data.
Our results showed significantly lower accuracy. This is due to
two facts. First, the authors used a much smaller dataset with
only 20 authors making the task of attribution easier. Second,
the experimental setup offered by their study assumed that

Lexical Syntactic
Features Layout

unigrams non-unigrams leaves non-leaves
All

GCJ
Original 6 20544 20 17393 667 38630
After info-
gain

6 187 0 342 72 607

GitHub
Original 6 87229 20 136415 808 224478
After info-
gain

5 197 6 405 76 689

Table 4: Effect of information gain feature selection
using Caliskan et al. [11] approach

the adversary is manipulating the training data and thus
training of the classifiers is performed on selected and already
obfuscated features.

We however followed a more realistic scenario commonly
used in adversarial machine learning, i.e., the adversary aims
to evade detection by manipulating test samples only [6]. We
thus trained the RandomForest classifier on non-obfuscated
code and tested it on obfuscated samples (imitated samples
in the case of imitation attack). We were able to hide the
coding style of the author with lexical and syntactic features
and decrease the attribution accuracy dramatically to 39.43%
for GoogCodeJam and to 30.29% for GitHub. After adding
control-flow flatenning, no authors were recognized correctly.

Generalization of author hiding method for any au-
thor style. The proposed author hiding method ”HideBy-
Cosine” requires that every time authors want to hide their
identity they should first identify the code transformations
that generate the most distinctive style with respect to their
own style. The goal now is to define transformations which
will be unique for all authors. We are doing this by consid-
ering one transformation from each group given in Table 2.
We transform the source code of all authors by using this
transformation and then perform classification again. In this
way, for example, we are able to identify the bracket styles
that are used the least in a considered dataset and then
modify each author’s brackets style by using this type of
brackets. This gives us the opportunity to find an unique
anonymous style that hides the coding style of all the au-
thors in the dataset. We refer to this obfuscation methods as
“MaxiCode” and ”MiniCode”. The methodolody of finding
such transformations presents in Algorithm 4.

Algorithm 4 Author hiding ”MaxiCode” or ”MiniCode”

Input: Dataset 𝑉𝑠 with number of authors 𝑠 and number
of source code samples 𝑚 for each author; List of possible
transformations 𝑇

Output: Set of transformations 𝑇𝑘

for all 𝑉𝑠 do
apply each transformation 𝑇𝑘 untill authorship attribution
will fail identify all authors 𝑠 in 𝑉𝑠

end for
return 𝑇𝑘

After applying such algorithm to our datasets, we define
”MaxiCode” obfuscation as following:

Session 7: Web Security and Privacy CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

300



Definition 5.2 (“MaxiCode” obfuscation). Let 𝑃 → 𝑃 ′ be
a transformation of a source program 𝑃 into a target program
𝑃 ′. In order for 𝑃 → 𝑃 ′ to be a “MaxiCode” obfuscation
the following transformations should be applied to original
program 𝑃 : Comments (add pure line comments on each line);
Brackets (transform all brackets to pico style); Spaces (indent
using all tab characters, if possible); Lines (add empty line
after each nonempty); Names and AST leaves: (use dictionary
to change all names to long names (8-10 characters), the first
sign is underscore, all names are unique for every author);
Control-flow (change ”while” to ”for”, change ”else if” to
”switch case”)

One of the obvious concerns with this method is the size
of source code since this transformation almost triples the
code size. This makes this transformation impractical to use
for developers in open-source projects. A possible solution is
to shrink the code instead of expanding it; we refer to this
method as “Minicode”.

Definition 5.3 (“MiniCode” obfuscation). Let 𝑃 → 𝑃 ′ be
a transformation of a source program 𝑃 into a target program
𝑃 ′. In order for 𝑃 → 𝑃 ′ to be a “MiniCode” obfuscation
the following transformations should be applied to original
program 𝑃 : Comments (no comments); Brackets (transform
all brackets to pico style); Spaces (remove all spaces or tabs
padding); Lines (delete all empty lines; write several state-
ments in one line); Names and AST leaves (change all names
on extremely short name indentifiers, the first sign is under-
score, all names are unique for every author); Control-flow
(change ”for” to ”while”, change ”switch case” to ”else if”)

The difference between “HideByCosine” method and “Maxi-
Code” (“MiniCode”) method that we proposed is that the
first one is more about modifying the individual author’s style
to the most dissimilar one; thus for every author the method
identifies different transformations, while the second method
is about finding an unique style that protects the style of
all authors. The main advantage of using the obfuscation
“MiniCode” or “MaxiCode” for author hiding is that authors
do not need to make any precomputations beforehand.

Table 5 shows how the accuracy of attribution changes
after applying the “MiniCode” approach to each feature set.
This transformation decreases the size of the program by
almost 8 times, while still preserving readability. After Mini-
Code obfuscation, the Kothari feature set achieves 1.88%
attribution accuracy (GoogleCodeJam dataset) and 0% ac-
curacy (GitHub). As the Kothari feature set is composed
of layout and lexical features, they can be obfuscated by
our transformations. As expected, Burrows and TFunigrams
give us 0% attribution, since these are n-grams features and
can be easily obfuscated by transformations in Table 2. Af-
ter applying control-flow flatenning (+CFF) on the top of
MiniCode and MaxiCode obfuscation 0% of authors can be
successfully attributed by Caliskan et al., Ding et al., and
Kothari et al. attribution systems.

GoogleCodeJam data set
Author Hiding

Ding Caliskan Burrows Kothari TFunigrams
Origin 73.84% 97.31% 73.29% 85.56% 96.95%

HideByCosine 1.08% 39.43% 0% 1% 0%
MaxiCode 4.12% 41.04% 0% 1.97% 0%
MiniCode 4.28% 43.90% 0% 1.88% 0%

HideByCosine+CFF 0% 0% 0% 0% 0%
MaxiCode+CFF 0% 0% 0% 0% 0%
MiniCode+CFF 0% 0% 0% 0% 0%

GitHub data set
Author Hiding

Ding Caliskan Burrows Kothari TFunigrams
Origin 67.25% 80.92% 69.56% 80.23% 75.08%

HideByCosine 0% 27.96% 0% 0% 0%
MaxiCode 2.37% 28.67% 0% 0% 0%
MiniCode 2.49% 30.29% 0% 0% 0%

HideByCosine+CFF 0% 0% 0% 0% 0%
MaxiCode+CFF 0% 0% 0% 0% 0%
MiniCode+CFF 0% 0% 0% 0% 0%

Table 5: Results of author hiding methods on both
datasets

6 CONCLUSION

In this paper, we explored the accuracy of attribution using
currently existing authorship attribution techniques in the
presence of deception. We introduced an author imitation
attack and investigated its feasibility on real-world software
repositories. We used low-cost and easily implementable ob-
fuscation techniques.

Also, we proposed several author hiding attacking tech-
niques: “HideByCosine”, “MaxiCode” and “MiniCode”. The
first method, “HideByCosine”, works individually with each
author by obfuscating source code to a style that is the most
different from that of the the user. This method has better
performance with respect to the other two. The other two
methods work by finding one style which is unique for all
authors. “MaxiCode” modifies the source code by extending
it which triples its size. In the meantime, “Minicode” signifi-
cantly reduces the size of the code making it almost 7 times
smaller. In addition we applied control-flow flatenning on the
top of this techniques to be able fully hide the coding style
of the author, which gives 0% attribution at the end.

With both author imitation and author hiding methods we
could significantly decrease the accuracy of current authorship
attribution techniques.
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