
Towards Eidetic Blockchain Systems with Enhanced
Provenance

Shlomi Linoy
Faculty of Computer Science

University of New Brunswick

Fredericton, Canada

Email: slinoy@unb.ca

Suprio Ray
Faculty of Computer Science

University of New Brunswick

Fredericton, Canada

Email: sray@unb.ca

Natalia Stakhanova
Department of Computer Science

University of Saskatchewan

Saskatoon, Canada

Email: natalia@cs.usask.ca

Abstract—Modern blockchain systems with smart contract
support are continuing to be rapidly adopted across various
industry sectors and are increasingly used to manage valuable
assets. As the size and complexity of smart contract applications
increases, so are the coding errors, exploit potential, and regu-
lation requirements. For these reasons, it has become necessary
to efficiently manage the system’s historic execution information,
or provenance, to enable efficient analysis. Existing approaches
facilitate historic data access, however, they do not support
tracking what initiated the changes or why the states mutated.
To address this, we propose a system that enables efficient
management of historic smart contracts calls, their parameters,
and the blockchain state before and after a call. We further
explore how querying this historic data in different granularity
levels can facilitate the analysis of a use case example comprised
of multiple smart contract calls across different entities.

Index Terms—Blockchain, provenance, call graph, defect anal-
ysis, debugging, regulatory requirements, audit

I. INTRODUCTION

Blockchain systems increasingly capture the attention of

academia as well as industry at a rapid rate. The adoption

of blockchain technologies is expanding in various industry

sectors such as healthcare [3], IoT [4], and securities trad-

ing [5]. With a projected market size of $4.19 billion in 2020

and $162.84 billion in 2027 [13]. Modern blockchains such as

Ethereum [1] and Hyperledger [2] make use of smart contracts

(abbreviated as ‘contracts’), which are programs that operate

on the blockchain’s current global state and produce a new

global state. Each contract can be executed by a client, a

contract, or can periodically run using a scheduler. As the tech-

nology mature, companies are increasingly using blockchain

applications to manage valuable assets, including crypto-

currencies, securities, real estate and valuable tangible assets.

Hence, it is important that contracts are free of defects. Issues

such as coding errors, malicious code and non-compliance

with regulations can result in impactful financial repercussions.

For instance, it has been reported [14] that a software bug

involving the replacement of += operation with =+ lead to the

loss of assets worth $800,000. Another incident [15] involved

an attacker exploiting a defect in contract code, which resulted

in a $80 million loss. A blockchain system that can efficiently

manage the historic information, or provenance, of both data

and contract execution flow can be used to facilitate forensic

analysis of contracts’ malicious activities, defects, or support

auditing. However, existing blockchain-based provenance so-

lutions, such as [8], do not track why or how the contract states

evolved, for instance, which contract executions mutated these

states. Therefore, they are not suitable for root-cause analysis

of blockchain transactions’ changes.

Understanding the change history of data has been ex-

tensively studied in the database systems community and is

referred to as data provenance. In data provenance each row

in the output of a single query (which is possibly comprised of

sub queries) is annotated with the input tuples that derived it.

Cheney et al. [11] introduced three types of data provenance

for a specific output tuple in a query result: Why-provenance

- the set of minimal input tuples that contributed to the

output tuple; How-provenance - specifies how the output tuple

was generated from the minimal input tuples; and Where-

provenance - maps the specific output tuple’s fields to the input

tuples’ fields. Glavic et al. [6] presented a system that supports

all three types of provenance by using query rewrites to

annotate the output tuples with the corresponding provenance.

While data provenance in general is mostly concerned with

content, workflow provenance looks at the flow of execution

and as such is derived from multiple components, each of

which has its own configuration parameters, which receives,

processes, and forwards data from/to other components. Miao

et al. [12] propose a system that collects workflow provenance

in a collaborative workflows’ environment.

Due to its potential, researchers explored using blockchain

as a tamper-proof, fault-tolerant, distributive, and decentralized

database for storing provenance information [16] [17]. Interest

in blockchain-based data provenance has been steadily grow-

ing. The blockchain’s intrinsic hash chain structure inherently

tracks the provenance of its ordered blocks, the ordered trans-

actions in each block, and the current state of the blockchain.

In order to provide analysis of a specific historic transaction,

all preceding transactions in all preceding blocks need to be

run, which is time and resources intensive. Ruan et al. [8]

proposed a system that collects the changed values of each

blockchain address after each transaction execution and stores

it in a Merkle tree. Contracts access this information using an

efficient index, which can increase the contracts’ applicability.

In order to analyse contracts execution flow, additional data

is needed. Devecsery et al. [10] discuss software systems that

remember all operations, function calls, and states at any time

and refer to them as Eidetic software systems. This historic

7

2020 IEEE 36th International Conference on Data Engineering Workshops (ICDEW)

2473-3490/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDEW49219.2020.00-14

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 20:59:21 UTC from IEEE Xplore. Restrictions apply.

�

�

�

� �

� �� �

� �

� �

� �

�

� �

Fig. 1. Execution flow of a full order request session

information facilitates analysis of metadata, e.g., it enables

queries that can answer questions about what states or calls

affected other states or calls, and conversely what states or

calls were affected by other states or calls. Inspired by this, we

propose an Eidetic blockchain system that supports provenance

for both data (blockchain states) and control flow (contracts).

Our system captures the provenance of the contracts’ execution

flow (execution flow provenance), their parameters, and the

relevant blockchain states before and after each contract call

(Why-provenance). This provenance information can then be

used to query the execution flow across time in different

granularity levels, facilitate a more complete understanding

of the contracts’ execution environment, and ultimately assist

in better security analysis of suspicious contracts behavior, as

well as regulatory, quality, and maintenance management.

II. SMART CONTRACT EXECUTION FLOW PROVENANCE

Existing approaches to capturing data provenance on

blockchain [8] [18] gather information regarding the past

history of blockchain states in a secure fashion. While, this

is quite useful, for the purpose of finding defects in contracts

code, and preventing potential blockchain abuse, it only pro-

vides information on what happened, rather than why or how it

happened. Accurately tracking information flow in blockchain,

along with its states and the contract execution flow that oper-

ates on the data, can help identify the root causes of anomalies,

trace negative debugging effects, investigate malicious actors,

and enable efficient audit tracking for regulation purposes. In

the next sections we provide a motivating example followed

by the description of our proposed system.

A. Motivating Example

Alice, Bob, and Carol are friends and uPhone enthusiasts.

Alice logs to an online retailer site to look for recent deals

on the new phone model. She receives a list of suppliers that

offer the phone alongside its price and quantity per supplier.

Alice then picks the supplier that offers the best price and

issues an order request. The Sales department receives the

order request, and issues an order request of its own to

TABLE I
SUPPLIERS DATABASE INITIAL DATA

supplier id product id product quantity product price
1 100 3 135
2 100 2 110

the Suppliers department. The Suppliers department issues a

shipping request to the Shipping department for the product

from the specific supplier to Alice. The Shipping department

then issues a shipping identifier and returns it to the Suppliers

department that returns it to Sales, that returns it to Alice.

When the product is delivered, the Shipping department sends

the shipping confirmation to Suppliers, that sends it to Sales.

Sales charges Alice using her recorded payment information

and issues a payment confirmation for Suppliers, which issues

a payment confirmation for Shipping. The execution flow for

Alice’s example can be seen in Fig. 1. Alice then informs Bob

about the supplier with the great deal she found. Bob logs to

the site, issues a similar order request, and calls to update

Carol, who logs to the site but can not find the deal. He calls

customer service to inquire why.

B. Entities, Contracts, and Data

Each department’s operational logic can be encapsulated by

a contract, i.e. Sales, Suppliers, and Shipping each has its

own contract. Each department maintains its database state on

the blockchain. Each department issues a contract call using

their corresponding client, e.g., the Sales department uses a

sales client to call the Sales contract. The user that issues the

order request uses its own client. A description of selected

contract API functions that participate in the order request

scenario are provided in Table II. The initial Suppliers database

can be seen in Table I. In our example we use two user clients

to issue an order request: Alice with client id 1 is the first to

issue the order request for product id 100 from supplier id 2,

which has only 2 units of the product. Bob with client id 2

follows with an order request of the same product from the

same supplier and orders an additional unit.

8

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 20:59:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CONTRACTS DESCRIPTION

Smart contract API function Description

sales order request
Records the order details in the client orders DB and calls the order request function in the Suppliers
smart contract. The response should contain a shipment id, which is updated in the order details.

suppliers order request
Records the order details in the sales orders DB and calls the shipping request function in the Shipping
smart contract. The response should contain a shipment id, which is updated in the order details and is
returned to the calling smart contract.

shipping shipping request
The client’s physical address details are updated, a shipment id is generated and is returned to the calling
smart contract.

Fig. 2. A session’s contracts call graph

III. THE PROPOSED SYSTEM

A. Collecting provenance data

In our proposed system the contract execution infrastructure

is modified to include a non-intrusive provenance collection

mechanism that collects relevant contracts’ execution infor-

mation during runtime and is comprised of:

• Execution parameters, such as the caller (client or con-

tract) name/address, the callee (contract) name/address,

and the API function alongside its parameters to be

invoked by the callee.

• Contracts call graph.

• Relevant states before and after the caller calls the callee.

When a caller calls the callee contract only the states that

are read or written by the caller and callee are collected. This is

done by modifying the blockchain context’s get/set functions

to record what addresses were read/written. The produced

results provide a more concise view of the provenance and

facilitate an easier analysis. The collected data are stored in a

provenance database. A different process converts and exports

the collected provenance data into a graph database such as

neo4j [9] to enable visualizing and querying the provenance

using the graph database query language.

Our system generates two types of provenance graphs. The

first type is a contracts call graph, where new entity nodes

are generated and connected per contract call to reflect the

provenance of the call graph (Fig. 2). The second type is

contracts parameters and state change graph, where for each

contract call its parameters and the states before and after the

call are captured and connected to the caller node (Fig. 3).

B. Querying provenance data

A user client’s session is comprised of multiple scenarios.

Transactions that are related to a specific scenario share a

unique scenario id as well as a session id that identifies

the user client’s session. The contracts call graph provides

information on what contracts were called during each session

and scenario and by whom (client/contract). Fig. 2 shows

the contracts call graph of Alice’s session. From this we can

see whether all contracts were called in the correct sequence.

Each node contains an entity id and name, the session id, the

scenario id, and the contract API function that was invoked

on the callee contract. To get more detailed information on

each contract call, it is possible to further query the contracts’

parameters and state change graph. Further, this graph can

be used to answer queries regarding changes in different

granularity levels, as the following examples explore:

a) Querying changes across multiple sessions: Returning

to the motivating example, Alice and Carol both ordered the

new uPhone from supplier id 2. Carol could not find the

same supplier and called the customer service to inquire about

it. A customer service representative queries the Suppliers

database and sees that the supplier with id 2 has no more

products. To reveal the history that led to this current state,

the representative can issue a query that shows what order

requests that involved supplier with id 2 were issued and their

details. The result can be seen in table III. The table shows

that customers with id 1 and 2 issued an order request on the

specific date and time for a product from supplier id 2. The

first line shows that after Alice issued the request, the product

quantity changed into 1, and the second line shows that after

Bob issued the request the product quantity changed into 0.

b) Querying changes in a session across multiple sce-

narios: Let’s assume that Alice would like to know when

her account was charged for the item. Table IV shows the

query results for Alice’s specific session in the Sales depart-

ment’s client orders DB. The first line shows that after the

order request the Sales department created a client order row

with id 111. Since the shipping id is provided at the end of the

order request call it can be seen in the last column. The second

line shows that the payment confirmation id was updated at

the end of the process payment call and its datetime.

9

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 20:59:21 UTC from IEEE Xplore. Restrictions apply.

TABLE III
A SUPPLIER’S STATE CHANGE ACROSS MULTIPLE ORDER REQUEST SCENARIOS

Contract call parameters API function parameters
Suppliers db row after

contract call

request datetime API function from to
supplier

id
client

id
product

id
product
quantity

supplier
id

product
id

product
quantity

2020-01-10 2:02:34 order request client sales 2 1 100 1 2 100 1
2020-01-10 3:16:15 order request client sales 2 2 100 1 2 100 0

TABLE IV
A CLIENT’S ORDER STATE CHANGES ACROSS A SESSION

Contract call parameters API function parameters
Client orders db row after

contract call

request datetime API function from to
sales order

id
supplier

id
payment

confirmation id
sales

order id
payment

confirmation id
shipment

id
2020-01-10 2:02:34 order request sales suppliers 111 2 111 555
2020-01-13 1:13:11 process payment sales suppliers 111 123 111 123 555

Fig. 3. Suppliers contract calls Shipping request on Shipping contract

c) Querying changes in a specific scenario and entity:

Fig. 3 shows a drill down query result for the Suppliers node

in the order request scenario (marked by a red square as in

Fig. 2), where the Suppliers department requests Shipping for

the product ordered by Alice. The middle node represents

the Suppliers department entity. The attached green node

represents the parameters used in the contract call such as

the contract and the API function names, and the request

datetime; the attached pink node contains the function specific

parameters such as Alice’s name and address, and the suppliers

order id; the blue node represents the relevant blockchain state

before the Shipping contract call; and the yellow node the

relevant blockchain state after the call. As can be seen, the top

most nodes (marked by a black rectangle) are present only in

the state after the call and represent the Suppliers’ shipping

order for Alice that was recorded by the Shipping contract.

IV. CONCLUSION

The adoption of smart contract applications in managing

valuable assets rapidly increases alongside the applications’

size and complexity. As a result, potential for exploitation,

the amount of coding errors and regulation requirements with

hefty financial consequences increase as well. In order to

facilitate root-cause analysis of anomalies and investigate

defects or malicious activities in the smart contracts, the

blockchain systems need to efficiently manage both data

and execution flow. In this paper we propose a blockchain

provenance collection and analysis system and explore how

the system can non-intrusively capture relevant provenance

information of the contracts’ execution flow, their parameters,

and the blockchain states before and after each contract call.

We further explore how this information can be queried at

different levels of granularity to facilitate better regulatory,

quality, and maintenance management.

REFERENCES

[1] Ethereum, https://ethereum.org/
[2] Hyperledger, https://www.hyperledger.org/
[3] Blockchain Applications For The Modern Nation,

https://cryptodaily.co.uk/2018/03/blockchain-applications/
[4] Blockchain has grabbed the attention of investors,

https://www.cnbc.com/2018/04/02/blockchain-has-grabbed-the-
attention-of-investors.html

[5] Three Near-term Applications For Blockchain Technology,
https://www.forbes.com/sites/forbesfinancecouncil/2018/03/28/three-
near-term-applications-for-blockchain-technology/2/#6c9f49c6310d

[6] Glavic, B. and Alonso, G., 2009. Perm: Processing provenance and data
on the same data model through query rewriting. ICDE. IEEE.

[7] Psallidas, F. and Wu, E., 2018. Smoke: Fine-grained lineage at interac-
tive speed. VLDB.

[8] Ruan, P., Chen, G., Dinh, T.T.A., Lin, Q., Ooi, B.C. and Zhang, M.,
2019. Fine-grained, secure and efficient data provenance on blockchain
systems. VLDB.

[9] neo4j, https://neo4j.com/
[10] Devecsery, D., Chow, M., Dou, X., Flinn, J. and Chen, P.M., 2014.

Eidetic systems. OSDI.
[11] Cheney, J., Chiticariu, L. and Tan, W.C., 2009. Provenance in databases:

Why, how, and where. Foundations and Trends® in Databases.
[12] Miao, H., Chavan, A. and Deshpande, A., 2017, May. Provdb: Lifecycle

management of collaborative analysis workflows. HILDA workshop.
ACM.

[13] https://www.statista.com/statistics/1015362/worldwide-blockchain-
technology-market-size/

[14] ETHNews: Hkg token has a bug and needs to be reissued (2017).
[15] Simonite, T.: $80 million hack shows the dangers of programmable

money, June 2016. https://www.technologyreview.com
[16] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K. and Njilla, L.,

2017, May. Provchain: A blockchain-based data provenance architecture
in cloud environment with enhanced privacy and availability. CCGRID.

[17] Ramachandran, A. and Kantarcioglu, M., 2018, March. SmartProve-
nance: a distributed, blockchain based dataprovenance system. CO-
DASPY. ACM.

[18] C. Xu, C. Zhang, and J. Xu. 2019. VChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases. SIGMOD. ACM.

10

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 20:59:21 UTC from IEEE Xplore. Restrictions apply.

