
Scalable Privacy-Preserving Query Processing Over Ethereum Blockchain

Shlomi Linoy, Hassan Mahdikhani, Suprio Ray, Rongxing Lu, Natalia Stakhanova, Ali Ghorbani

University of New Brunswick, Fredericton, Canada
{slinoy, hmahdikh, sray, rlu1, natalia.stakhanova, ghorbani}@unb.ca

Abstract—Blockchain technologies have recently received
considerable attention, partly due to the success of cryp-
tocurrency applications such as Bitcoin and Ethereum. As
the adoption of blockchain technologies by various sectors
increases, there is a demand for tools that enable regula-
tory enforcement, which include monitoring, examining and
ensuring compliance of the data stored by the blockchain
systems, all in a privacy preserving way. Current blockchain
solutions store transactions in append-only and immutable
fashion without any indexing, which contributes to limited and
inefficient queries. Additionally, there is no support for privacy-
preserving query processing. To address these issues, in this
paper, we propose a system that can provide auditors, enforc-
ing regulatory compliance, with efficient, scalable and richer
blockchain query processing over Hadoop and synchronized
Ethereum clients. The system additionally ensures auditors’
privacy by utilizing cryptography techniques over semi-trusted
servers to protect the auditors’ identities, queries and their
results.

Keywords-blockchain; privacy; bigdata; database;

I. INTRODUCTION

With the advent of BitCoin [1], regarded as the first

cryptocurrency, multiple new forms of virtual currencies,

such as Ethereum [2] and ZCash [3], have emerged.

The underlying technology behind cryptocurrencies, is the

blockchain, which enables different parties, who do not

trust each other to share information, without requiring any

central coordinator through the use of a robust consensus

protocol such as Proof-of-Work [1]. Due to its promise,

blockchain can serve as a highly trustable distributed data

storage solution for handling structured data. Consequently,

blockchain has inspired research in the database and sys-

tems community [4]–[7]. Ethereum extends the blockchain

technology to enable a distributed computing platform that

supports execution of smart contracts. Such smart contracts

can be used securely in many sectors, such as government

and industries. For example, Ethereum smart contracts could

be used to speed up claim processing, reduce operating costs

in law enforcement sectors [8], enable online decentralized

secure voting [9] and be used in insurance industries [10].

Multinational retail corporations face recurring supply

chain management issues, such as the one related to the

Walmart’s recent romaine lettuce E. coli outbreak in North

America [11]. The exact source and extent of the contami-

nated lettuce could not be determined from the supply chain

system, which resulted in huge losses to all parties involved.

In order to reduce such issues, companies are adopting

solutions based on blockchain technologies at a high rate.

Private blockchains contain sensitive information, which

may need to be audited according to regulatory require-

ments. The auditors need to have access to the com-

pany’s raw blockchain data, as opposed to an intermedi-

ate processed data repository, where the data may have

been tampered with. In addition, to support more efficient

and rigorous auditing procedures, the disclosure of queries

should be prevented. As the amount of data stored in the

blockchain increases, the immutability of every block and

its transactions ensures an exponential data size increase.

Due to the linked structure of the blockchain, only sequential

pass over the entire blockchain data is possible, which limits

querying capabilities. In order to enable richer and more

performant querying, auditors need to fetch the raw data and

then process it offline. This can be achieved by implementing

a capable server with access to the company’s blockchain

nodes. An Ethereum node can be implemented in various

languages according to the Ethereum yellow paper [12] and

we chose to focus on Go-Ethereum (Geth) which stores data

in a key-value store (LevelDB [13]). The Ethereum node

uses a general JSON RPC protocol [14], which specifies

limited querying capabilities of its internal storage. These

define the retrieval of one block or transaction per request.

In order to retrieve multiple blocks or transactions, multiple

API calls per block/transaction need to be executed. This

can be inefficient, especially as the blockchain consistently

expands in volume. Some third party tools have been de-

veloped to address the scalability issues in the form of a

centralized service. For example EtherQL [15] downloads

the Ethereum blockchain data, stores it in MongoDB and

exposes an API with predefined queries. However, custom

queries and private information retrieval are not supported.

Another system, vChain [16] provides a way to execute

boolean range queries using cryptographic proofs, vital to

enable query integrity. However, the use of cryptographic

proofs incurs high processing times, which are orders of

magnitude slower compared to our proposed system. Similar

additional tools are described in the related work section.

In this paper, we propose a system that enables multiple

auditors perform richer queries over blockchain data in an

efficient and scalable way. Our system additionally sup-

ports private information retrieval by utilizing cryptography

techniques over semi-trusted servers to protect the auditors’

identities, queries and their results. To handle the current and

398

2019 IEEE International Conference on Blockchain (Blockchain)

978-1-7281-4693-5/19/$31.00 ©2019 IEEE
DOI 10.1109/Blockchain.2019.00061

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

rapidly increasing blockchain data volume, the system em-

ploys Hadoop [17], which is a scalable distributed processing

solution for big data. Users submit SQL queries which are

transformed into MapReduce tasks and are run on Hadoop.

When missing data is required, MapReduce tasks are created

and used to download the data from Ethereum clients in

parallel and store them in the local HDFS. An in-memory

B+Tree-based index is used to index the downloaded data

for efficient future access. The entire data fetching process

utilizes privacy-preserving techniques. The client and the

data server share a secret key. The client sends the server an

encrypted and modified query, the server sends the client the

encrypted results and the client continues to further refine the

results according to the full SQL query. The communication

between the client and the server involves an intermediary

proxy, which also serves to hide the identity of the client.

Our contributions can be summarized as follows:

1) Propose support for SQL query language over blockchain

data, which includes SELECT statements and aggregate

functions, e.g. MIN, MAX and SUM, with WHERE

clauses to fetch blockchain blocks and transactional

information over specified ranges and additional filters.

2) Design and implement a scalable and robust system that

executes queries in a parallel and distributed fashion by

utilizing Hadoop’s MapReduce infrastructure.

3) Design and implement a private information retrieval

approach to ensure the client’s (auditor) confidentiality

in the submitted query and its results during the commu-

nication between the different parties, i.e. client, proxy

and the data server.

II. THE PROPOSED SYSTEM

The overall system architecture is shown in Fig. 1.

A. Main components
Client - Parses the user’s (auditor) query, which includes

a block number range, and extracts a fetch query and a

processing query. The fetch query is used to fetch all

blocks/transactions required by the processing query while

enforcing privacy preservation. The processing query, which

includes the main query logic is run on the fetched data.

Proxy - Acts as a mediator between the client and server. It

hides the source of the client from the server and filters the

fetched data from the server before sending it to the client in

order to save network bandwidth and decryption resources.

Data Processing Server - Serves blocks or transactions

requested by the client’s modified fetch query. The data

retrieval includes fetching missing data, if required, from

Geth clients and saving them for future use. These are done

using Hadoop MapReduce tasks. The results are encrypted

and sent securely to the proxy.

B. Assumptions:
• The client and server share a secret key for data encryp-

tion/decryption.

• The proxy and the server are assumed to be honest-

but-curious; i.e. the two follow the protocol, but may

try to extract additional information in the process. This

assumption can be guaranteed in practice since companies

try their best to maintain their reputation.

• No collusion between proxy and server. Since the server

decodes the fetch query, it knows only the extended range

of the blocks/transactions from the client’s query. The

proxy contains knowledge of the actual range in the user’s

query. Collusion between the server and the proxy can

reveal the exact range.

C. Privacy preserving query processing
To preserve the privacy of the client’s query and to

securely transmit the results, the client splits, modifies and

encrypts the user’s query by applying a secret key, which

is shared between both the client and server, and sends

it to the proxy. The proxy cannot decrypt the query and

only propagates the encrypted query to the server, which

can decrypt it by using the shared key. Since the proxy

serves as an intermediary between the client and the server,

the latter cannot identify the query’s sender and, since the

client extracted this partial query from the user’s query

and extended its boundaries, the server cannot know the

exact user’s query or even its exact range. The server then

retrieves the requested blocks/transactions, encrypts them,

and sends the encrypted results to the proxy. The proxy

cannot decrypt the results, but can filter some of them to

improve the communication and decryption performance.

The proxy then sends the filtered encrypted results to the

client, which decrypts the results and continues to execute

the complete query.

III. SYSTEM MODEL

In this section we describe the design and implementation

of the proposed system and explore in detail the processes

involving all its components. We describe the process in

a flowchart that starts with the client receiving the user’s

(auditor) query and processes it, continues to the proxy and

then to the server. The process continues with the server

sending the results to the proxy, and the proxy to the client.

SQL query parser
The client parses the user’s query using a parser built

with ANTLR4 [18] and supports SELECT statements that

include aggregate functions, e.g. MIN, MAX, and SUM,

and WHERE clauses including range specifications. The

FROM can receive either block or transaction as a source.

We demonstrate our system’s capabilities with two example

queries (inspired by [6]) as presented in Table I.

Client to proxy
The client receives the query from the user, parses it using

the SQL query parser and extracts two queries: a fetch query
(see Algorithm 1) and a processing query. The fetch query is

used to fetch all blocks in the extended range from the server.

399

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

User Query

Encrypted Batches

Generate Hashset of User

Requested Blocks

Proxy Machine Server

Decrypt Batches

Search B+Tree Index

Decrypt Proxy’s Response

Apply remaining where clause

conditions

Apply the aggregate functions

Encrypt Batches

Generate Hash for each Batch

Run MapReduce Job to Fetch from Geth

Store the Result in HDFS Repository

Update the B+Tree (BlockID & UUID)

Retrieve UUID File from B+Tree

Run MapReduce Job to Retrieve Blocks’

Data from HDFS

11

8 17

2 5 8 10 13 14 15 18 20

f1 f8 f3 f4 f2 f2 f6 f7f5

User/Client

N

Y

SKSS SKKK

User Query

Store the Hashset
{H(Lx Ux SK), H(Ly Uy SK), …, H(Lz Uz SK)}

Forward Encrypted Batches

Enc(L2--U2, SK), H(L2 2)

Enc(L1--U1, SK), H(L1 1)

Enc(Lk--Uk, SK), H(Lk k)

. . .

. .
 .

N
o

d
e
1

 N

o
d

e
2

 N
o

d
e
n

. .
 .

N
o

d
e
1

N

o
d

e
2

N
o

d
e
n

Hadoop Cluster

. .
 .

G
e

th
1

G
e

th
2

 G
e

th
m

. .
 .

G
e

th
1

G
e

th
2

 G
e

th
m

Geth Clients

L2--U2L1--U1 Lk--Uk

. . .

Filter the Batches by

Comparing Stored Hashset

Enc(L2--U2, SK)

Enc(L1--U1, SK)

Enc(Lk--Uk, SK)

.
.

.

User’s Requested Blocks Hashset

{H(Lx Ux SK), H(Ly Uy SK), …, H(Lz Uz SK)}
. . .

. . .

Ly--UyLx--Ux Lz--Uz

. . .

Figure 1: System Components and Model

Once the fetched data is received by the client, the process-
ing query processes the data locally. For example, the query

Q1 in Table I is split into a fetch query part (FQ in Table II)

whose results are stored locally in fetched results and to a

processing part (PQ in Table II). To generate the fetch query,

the client extracts the block number’s lower/upper bounds

(LB/UB) from the query. For each bound, a random value in

a user specified range (LBR/UBR) is generated. One random

value is subtracted from the LB and the second random value

is added to the UB to extend the range. This extended range

is then split into a set of ranges with a user defined batch size

which is encrypted individually using a key shared with the

server Sk. In addition, for each block range that intersects

the range of the the original LB/UB range, which is appended

with Sk, the client generates a hash. The client then sends

the encrypted split range batches and their hashes to the

proxy. The proxy receives the encrypted range splits and

their hashes and saves the hashes for further processing.

Index
The server uses an in-memory B+Tree-based index, which

is indexed on block number to retrieve the corresponding

transactions’ data file paths in HDFS. The index serves two

purposes when used on a range of block numbers:

1) It finds the HDFS repository file paths that contain the

transaction/block in the provided range.

2) It finds block numbers, which do not exist in the HDFS

repository in the provided range.

Proxy to server
The proxy propagates the encrypted range splits to the

server. The server uses HDFS to store blocks/transactions

and to run queries using MapReduce tasks in order to

retrieve existing data from HDFS repository and to fetch

Algorithm 1: client prepare fetch query

Input: SQL like query - user query, Sk - client/server shared key,
LBR/UBR - Lower/Upper Bound Range to calculate random
value, blocks per batch - number of blocks per range split

Output: enc range splits list - list of encrypted ranges,
ranges hash set - hashes of ranges intersecting query range

1 fetch query, process query ← parse(SQL like query)
2 LB, UB ← parse(fetch query) // query Lower/Upper Bounds
3 rand lower ← get random in range(LBR)
4 rand upper ← get random in range(UBR)
5 ELB ← min(1, LB - rand lower) // Extended Lower Bound
6 EUB ← UB + rand upper // Extended Upper Bound
7 ranges hash set ← {}
8 enc range splits list ← list()
9 extended range size ← (EUB - ELB + 1)

10 splits count ← extended range size/blocks per batch
11 for i← 0 to splits count by 1 do
12 split start ← ELB + i · blocks per batch
13 split end ← split start + blocks per batch
14 add range split(IN LB, IN UB, IN split start, IN split end, IN

Sk, OUT enc range splits list, OUT ranges hash set)
15 // last remaining range split will be addressed similarly

missing data from Geth clients. To serve queries that contain

a block number range, the server executes two MapReduce

tasks (Algorithm 2):

1) A MapReduce task to fetch missing blocks/transactions

that are not already stored in the HDFS repository from

Table I: Query examples

Q1
SELECT MAX(value) FROM transactions
WHERE block number BETWEEN <LB> AND <UB>

Q2
SELECT * FROM transactions
WHERE block number BETWEEN <LB> AND <UB>
AND account address=<address>

Table II: Fetch/Processing query extraction example

FQ
SELECT * FROM transactions
WHERE block number BETWEEN <ELB>AND <EUB>

PQ
SELECT MAX(value) FROM fetched results
WHERE account address = <address>

400

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: server get data

Input: enc range splits list, Sk - client/server shared key,
blocks per task, Geth client ip addresses, threads per task,
HDFS output dir, local results dir, block number pos -
position in results line

Output: enc ranged res hash map - all blocks in range, split by
ranges, encrypted and hashed

1 range splits list ← list()
2 for enc range in enc range splits list do
3 range ← AES.decrypt(enc range, Sk)
4 range splits list.add(range)

5 ELB ← range splits list.first().LB // Extended Lower Bound
6 EUB ← range splits list.last().UB // Extended Upper Bound
7 missing blocks list ← Index.get missing blocks(ELB, EUB)
8 if missing blocks list �= ∅ then
9 server fetch data from Geth(IN missing blocks list, IN

blocks per task, IN Geth client ip addresses, IN
threads per task)

10 server retrieve data from Hadoop(IN ELB, IN EUB, IN
range splits list, IN HDFS output dir, IN local results dir, IN
block number pos, OUT enc ranged res hash map)

Geth [19] clients using Web3j [20].

2) A MapReduce task to retrieve existing

blocks/transactions from the HDFS repository

(Algorithm 3).

Upon receiving the encrypted query from the proxy con-

taining the extended block numbers range splits, the server

decrypts the ranges and extracts the extended lower bound

(ELB) and extended upper bound (EUB) of the range. It

then searches the index for the block numbers that are

missing in the index, and consequently, in HDFS. If there

are such blocks, a MapReduce task is run to fetch the

missing blocks/transactions from the Geth clients. To do

so the server prepares an input file for the MapReduce

task. The MapReduce task is configured to consume the

input file one line at a time. Each input file line contains

a different iterating Geth client IP address in order to

distribute the fetching load between all tasks, in addition

to a user defined threads per task count to use in each

node to fetch the blocks concurrently. The number of

input file lines and, hence, the number of tasks is cal-

culated by missing blocks list.size()/blocks per task. The

blocks per task parameter should be determined in advance

to maximize memory consumption in each node in order

to utilize the nodes efficiently. The MapReduce task is

configured to not use reducers in order to prevent memory

issues when downloading a large amount of data and to

maximize resources usage (more nodes are used as mappers)

when fetching the data from Geth clients. Each mapper

communicates with a synchronized Geth client using Web3j

to fetch the missing data and produces a result file in the

HDFS output dir directory. When all MapReduce tasks are

complete, the mappers’ result files are downloaded locally to

the server from HDFS and merged into one file that contains

all blocks/transactions delimited by a new line. The file is

then uploaded to the HDFS repository to be used in future

queries. The index is updated to point to the uploaded file,

which contains the missing blocks. An offline process is

Algorithm 3: server retrieve data from Hadoop

Input: ELB/EUB - Extended Lower/Upper Bound, range splits list
- range splits, HDFS output dir, local results dir,
block number pos - position in results line

Output: enc ranged res hash map - all blocks in range, split by
ranges, encrypted and hashed

1 index file name list ← Index.get indexed file names(ELB, EUB)
2 update retrieve map reduce template source code to fetch only data

in the block numbers range between ELB and EUB
3 compile the updated map reduce code into

updated retrieve map reduce
4 updated retrieve map reduce.task(index file name list,

HDFS output dir)
5 copy all mapppers results files from HDFS output dir to

local results dir
6 results ← merge all mappers results files in local results dir
7 ranged results hash map ← {}
8 for range in range splits list do
9 ranged results hash map.add(range, list())

10 sorted range splits list ← sort range splits list on LB
11 for res in results do
12 block number ← res.get(block number pos)
13 range ← sorted range splits list.get range(block number)
14 // get range function searches sorted range splits list for a
15 // range with the largest LB that is smaller or equal to block
16 // number. Works in O(logn)
17 ranged results hash map.get(range).add(res)

18 enc ranged res hash map ← {}
19 for range in ranged results hash map.keys do
20 range hash ← SHA256(range|Sk)
21 batch ← ranged results hash map.get(range)
22 enc batch ← AES.encrypt(batch, Sk)
23 enc ranged res hash map.add(range hash, enc batch)

used to split this file into smaller files and update the index

accordingly for more efficient retrievals in future queries. In

the next step, the server retrieves all the blocks requested

by the query from the HDFS repository, encrypts them,

generates their hashes, and returns both to the proxy. To

do so (see Algorithm 3), the server searches the index for

all the HDFS repository indexed file paths that contain all

block numbers in the extended query range. The resulting

list of file paths is used as input to the MapReduce task

that retrieves blocks/transactions from HDFS. To prepare

this MapReduce task, the server uses a Java template code

snippet that provides the functionality for a task to get each

line from its input file and output the line only if it passes

a filter statement. The filter statement is a placeholder for

an if-condition that is generated by the server according to

the extended lower and upper bounds (ELB/EUB) of the

query. The code is then compiled to produce the mapper task

binaries. This MapReduce task is also configured to not use

reducers to preserve memory and maximize node resources.

Each mapper uses a text file input split with a default split

size of 64M. The task is then run with the indexed file paths

retrieved from the indexer and the mappers’ results files are

copied to the server locally and merged into a single file

whose lines are delimited by a new line. The merged results

file is then partitioned into batches. Each batch contains

block lines with block numbers in the batch’s specific range.

The ranges are extracted from the range splits provided in the

query. Each batch is encrypted using the secret key shared

with the client and the hash of the batch range plus the secret

401

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

key is calculated.

Server to proxy
The server sends the encrypted results and their hashes to

the proxy. The results are composed of tuples. Each tuple

contains an encoded batch with block/transaction lines, and

the second item in the tuple is the hash of the batch range

plus the shared key. The proxy filters the received results by

retaining only the batches whose range hash is contained in

hashes provided by the client.

Proxy to client
The proxy sends the filtered results to the client. The client

decrypts each batch with the shared key and merges it into a

fetch results list. Since a batch may contain information on

block numbers not in the full user’s query range, the client

filters these lines. The client continues to locally execute

the process query on the fetch results, which includes the

aggregate functions and other WHERE clause filters.

IV. EVALUATION

We used a dataset from live Ethereum feed provided by

Geth clients. The experiments were conducted on a cluster

of four machines, each having an Intel(R) Xeon(R) CPU

E5472 @ 3.00GHz and 8GB of memory. Two additional

machines were used for running Ethereum Geth clients.

Table I shows the queries used for evaluation. Table III

shows the varied block numbers and their ranges values

used in our experiments. Each block range configuration was

run with either 1 or 4 nodes per cluster. See Table IV for

the configuration details. ”Blocks per batch” indicates the

number of blocks each task downloads. ”Threads per task”

indicates the number of threads each task uses to download

the transactions/blocks concurrently from the Geth clients.

The experiments evaluate two independent processes:

1) Server fetch time, which consists of fetching missing

blocks, index update, storing of newly fetched data into

HDFS, and fetching all query data from HDFS.

2) All steps of the query processing time after the

server’s data fetch. This includes server results encryp-

tion, proxy filtering, client results decryption, applying

WHERE clause filtering and aggregate function.

The server’s total fetch time is dependent only on the

query’s extended range size and not on any other part of

the query. This means that different queries with the same

extended range should present similar server total fetch

times. Fig. 2 demonstrates the significant improvement of

Table III: Block numbers and ranges used
Blocks LB UB Blocks LB UB

100 3000000 3000100 200K 3000000 3200000
1K 3000000 3001000 300K 3000000 3300000

10K 3000000 3010000 400K 3000000 3400000
100K 3000000 3100000 500K 3000000 3500000

Table IV: Single and multiple nodes configuration
Nodes Geth clients Blocks per batch Threads per task

4 2 5000 4
1 1 5000 8

our solution due to the parallel downloading and fetching of

all the query blocks/transactions.

5.1 Fetching missing data from Geth clients
When the system is initialized (first time), all Ethereum

blocks generated until that point are needed to be fetched

from Geth client(s) and the index needs to be built. After

that, a background process is run periodically to fetch

newer blocks from Geth clients. Fig. 2(a) shows the time

improvement when all blocks are fetched from Geth client(s)

by using multiple Hadoop nodes in comparison to that with

a single node. The average speedup achieved is 1.52×. In

this configuration, 2 Geth clients are used with the 4 Hadoop

nodes. It may seem that the speedup should be at least 2.

However, since all 4 nodes send requests to the same 2

Geth clients, the consequent load on each Geth client lowers

the speedup gain. Using at least 2 more Geth clients would

significantly increase the speedup.

5.2 Fetching data from HDFS repository
For most queries, it is expected that the blocks specified

by the query ranges are already fetched from Geth clients.

Fig. 2(b) shows the time improvement for the data retrieval

from HDFS, when all blocks are already fetched from Geth

clients and the index is updated accordingly. Multiple nodes

configuration is compared to the single node configuration.

The average speedup achieved is 2.47×. This can be at-

tributed to our use of the default text file split size of

64M. We believe that the speedup can be further improved

by reducing default text file split size or alternatively, by

retrieving a bigger range of blocks resulting in bigger data

files. Fetching from HDFS is the typical use case where

most data is already indexed and occasionally few blocks

from live data are fetched from Geth clients.

5.3 Steps following server data fetching
Following the fetch of missing/existing data, the server

encrypts and calculates the range hash of each batch and

sends these results to the proxy, which filters the relevant

batches according to the hashes it received from the client

and sends them to the client. The client then decrypts the

results and filters the data that are in the user query range

(before continuing to execute the processing query). The

summary and breakdown of the processing times for these

steps are shown in Fig. 3 for the two types of queries in

Table I. Fig. 3(a) shows the processing times for query Q2

in Table I and Fig. 3(b) shows the processing times for

query Q1 in Table I. As can be seen, the relative processing

times of the different steps are similar for 100k and above

ranges in both query types. The average breakdown of the

different processing parts can be seen in the pie charts. Here,

about 50% of the processing time is attributed to the results

encryption by the server, followed by about 30% of the

processing time for the decryption of the filtered results by

the client, and about 20% of the processing time to filter

the results by the proxy. In Query Q1 there is an additional

use of an aggregation function, which is not specified in Q2.

402

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

12 0 11
170

363

543

712

969

0

500

1000

1500

2000

2500

3000

100 1K 10K 100K 200K 300K 400K 500K

T
im

e
(s

)
Multiple Nodes Single Node

(a) Fetching from Ethereum Geth clients

1 0 1 14
26

45

60

63

0

20

40

60

80

100

120

100 1K 10K 100K 200K 300K 400K 500K

T
im

e
(s

)

Multiple Nodes Single Node

(b) Fetching from HDFS

Figure 2: (a) Fetching all data blocks from Ethereum Geth

clients (system initialization). (b) Fetching of all requested

data from HDFS (already indexed).

0

50

100

150

200

250

300

350

100 1K 10K 100K 200K 300K 400K 500K

T
im

e
(s

)

Client - Response Decryption & Apply Filtering

Proxy - Filter Result

Server - Result Encryption

Averall Average

Breakdown

48.49

19.36

32.15

(a) Query Q2 in Table I

0

50

100

150

200

250

300

350

400

100 1K 10K 100K 200K 300K 400K 500K

T
im

e
(s

)

Client - Execute Aggregate Function

Client - Response Decryption & Apply Filtering

Proxy - Filter Result

Server - Result Encryption

49.82

16.18

30.19

3.81

Overall Average

Breakdown

(b) Query Q1 in Table I

Figure 3: Performance breakdown following data fetch

This adds the aggregation time to the client side, which is

relatively negligible in comparison to the other parts.

V. RELATED WORK

Ethereum block explorers are useful tools for block and

transaction queries, as they allow to follow transactions and

diagnose possible problems. Some usage examples include:

finding all the information about a specific block/transaction,

all transactions in a specific block, what transactions were

made to/from specific account-address, etc. Some implemen-

tations of Ethereum blockchain explorer include: ERC20-

Exporter [21] - a lightweight explorer that looks into all

information on-the-fly from a back-end Ethereum node. It

was developed with Node.js, Express.js and Parity. ERC20

[22] provides a common list of rules for Ethereum tokens

to follow within the larger Ethereum ecosystem, allow-

ing developers to accurately determine interaction between

tokens. These rules include how the tokens are passed

between addresses and how data within each token are

accessed. ERC20-Exporter is used to explore the ERC20-

based Ethereum tokens and supports Parity back-end node

(the authors state it also supports Geth client although this

was not tested yet [21]). Initial data export for large tokens

takes up to 30 minutes, as it tries to scrape the blocks’

info like Ethereum Scraper [23] that exports the blockchain

data by indicating start and end block number. EthExplorer

[24] is a work in progress explorer developed with Node.js.

EtherScan [25], ETCExplorer [26], and Ethplorer [27] pro-

vide web-based UI and supports mostly related RESTful

APIs, such as getTopTokens and getTokenHistory. They

are implemented by calling basic methods from Ethereum

clients and each implementation enforces its own limitation.

For example, in EthersScan the API requests are limited to

5 requests/sec.

Privacy-preserving concerns or even simple logical com-

binations in the user requests are not supported by any of the

existing systems. Etherchain Light [28], another lightweight

blockchain explorer built with Node.js, Express.js and Parity,

retrieves information on the fly from a back-end Parity node.

It has extended the Ethereum Web3 API to provide some

statistical measures such as transaction count and is still

under development. Ethereum Explorer [29] is a decentral-

ized client for Ethereum that interacts with the Ethereum

blockchain via the Ethereum Web3 API, and provides users

with basic interfaces to explore blocks. EtherQL [15] imple-

ments a query layer for Ethereum that supports some power-

ful APIs e.g., range query and top-k queries and is backed by

MongoDB as the persistence layer to store blockchain data.

vChain [16] proposes a solution to produce privacy preserv-

ing boolean query results in blockchain. The query result is

paired with a cryptographic proof to guaranty its integrity.

To support this verifiable query processing, vChain requires

to modify the block structure to incorporate an authenticated

data structure. To optimize query efficiency, inter-block and

intra-block indexes are implemented. Our solution differs by

not requiring any modifications to the blockchain. Whereas

vChain requires a query to be in a specific format, our

solution supports SQL query. vChain uses homomorphic

encryption techniques, which are costly compared to our

solution’s use of relatively lightweight symmetric encryption

403

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

AES and SHA256. In addition, vChain performs all crypto-

graphic calculations on the server containing the full node, in

our solution the fetch query execution initiates the encryption

and download of the ranged data from a blockchain node and

eventually continues with the processing of the query’s main

logic on the client side. This results in server (and client)

processing times, which are orders of magnitude lower than

in vChain. Finally, The SQL query in our system provides

more capabilities (e.g. aggregation), which can be easily

extended to support more complex features, which are not

restricted by the homomorphic encryption constraints as in

vChain.

VI. CONCLUSION

As an increasing number of sectors are integrating

blockchain technologies, it is important to have an efficient

and secure auditing system to help monitor and analyze

blockchain repositories, while preserving the auditors’ pri-

vacy. To this end, our proposed system uses big data

processing techniques to support all the above requirements.

Our system provides a secure, robust, and scalable way to

process SQL queries over any blockchain. It enables multiple

auditors to execute queries in an efficient and scalable

way, while preserving the privacy of auditors’ identities and

prevent the disclosure of the queries being used and their

results. The system supports SQL queries with range and

aggregate functions, which are transformed into MapReduce

tasks to be run on Hadoop. The system uses Hadoop’s

MapReduce tasks to efficiently fetch missing blocks from

Ethereum clients. In addition, an in-memory B+Tree-based

index is utilized to index previously downloaded and stored

Ethereum blocks. We conducted a systematic performance

study, which suggests that the system’s performance can im-

prove by adding more Hadoop nodes and more synchronized

Ethereum clients.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash sys-
tem,” 2008.

[2] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform, 2013.”

[3] “ZCash, 2016,” https://z.cash/.

[4] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich et al., “Hyperledger fabric: a distributed operat-
ing system for permissioned blockchains,” in EuroSys, 2018.

[5] Z. Xu, S. Han, and L. Chen, “Cub, a consensus unit-based
storage scheme for blockchain system,” in ICDE ,2018.

[6] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and
K.-L. Tan, “Blockbench: A framework for analyzing private
blockchains,” in SIGMOD, 2017.

[7] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das,
“Everything you wanted to know about the blockchain: Its
promise, components, processes, and problems,” IEEE Con-
sumer Electronics Magazine, vol. 7.

[8] “Blockchain has grabbed the attention of investors,”
https://www.cnbc.com/2018/04/02/blockchain-has-grabbed-
theattention-of-investors.html, 2018.

[9] E. Yavuz, A. K. Koç, U. C. Çabuk, and G. Dalkılıç, “Towards
secure e-voting using ethereum blockchain,” in 2018 6th
ISDFS.

[10] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and
V. Santamarı́a, “Blockchain and smart contracts for insurance:
Is the technology mature enough?” Future Internet, vol. 10.

[11] “From farm to blockchain: Walmart tracks its lettuce,”
https://www.nytimes.com/2018/09/24/business/walmart-
blockchain-lettuce.html.

[12] “D. G. Wood, Ethereum: A secure decentralised generalised
transaction ledger,” https://github.com/ethereum/yellowpaper,
2017.

[13] “Leveldb, 2014,” https://github.com/google/leveldb.

[14] “Ethereum json rpc,” https://github.com/ethereum/wiki/wiki/JSON-
RPC, 2014.

[15] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “EtherQL: a
query layer for blockchain system,” in DASFAA, 2017.

[16] C. Xu, C. Zhang, and J. Xu, “vchain: Enabling verifiable
boolean range queries over blockchain databases,” SIGMOD,
2019.

[17] “Apache hadoop, 2009,” http://hadoop.apache.org/.

[18] “Antlr,” http://www.antlr.org/, 1995.

[19] “Go ethereum, 2014,” https://github.com/ethereum/go-
ethereum.

[20] “Web3j , 2016,” https://github.com/web3j/web3j.

[21] “Erc20exporter,” https://github.com/gobitfly/erc20-explorer,
2017.

[22] “Erc20 token standard,” https://theethereum.wiki/w/index.php/

ERC20 Token Standard#The ERC20 Token Standard Interface.

[23] “Ethereumscraper,” https://github.com/medvedev1088/ethereum-
scraper, 2018.

[24] “Ethexplorer,” https://github.com/etherparty/explorer, 2015.

[25] “Etherscan,” https://github.com/sebs/etherscan-api, 2016.

[26] “Etcexplorer,” https://github.com/ethereumproject/explorer,
2016.

[27] “Ethplorer,” https://ethplorer.io/, 2016.

[28] “Etherchain light,” https://github.com/gobitfly/etherchain-
light, 2017.

[29] “Ethereum explorer,” https://github.com/mix-
blockchain/ethereum-explorer, 2017.

404

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:09:32 UTC from IEEE Xplore. Restrictions apply.

