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Abstract—Blockchain users are identified by addresses (public 
keys), which cannot be easily linked back to them without out- 
of-network information. This provides pseudo-anonymity, which 
is amplified when the user generates a new address for each 
transaction. Since all transaction history is visible to all users in 
public blockchains, finding affiliation between related addresses 
can hurt pseudo-anonymity. Such affiliation information can 
be used to discriminate against addresses that were found to 
be related to a specific group, or can even lead to the de-
anonymization of all addresses in the associated group, if out- 
of-network information is available on a few addresses in that 
group. In this work we propose to leverage a stylometry approach 
on Ethereum’s deployed smart contracts’ bytecode and high level 
source code, which is publicly available by third party platforms. 
We explore the extent to which a deployed smart contract’s 
source code can contribute to the affiliation of addresses. To 
address this, we prepare a dataset of real-world Ethereum 
smart contracts data, which we make publicly available; design 
and implement feature selection, extraction techniques, data 
refinement heuristics, and examine their effect on attribution 
accuracy. We further use these techniques to test the classification 
of real-world scammers data.

Keywords -blockchain, Ethereum, smart contracts, distributed 
ledger, Ethereum, traceability, authorship attribution

I. I n t r o d u c t i o n

With the rising popularity of blockchain technologies, their 
practical applications in the industry sectors are expanding 
as well (healthcare [1], government [2], IoT [3], insurance 
policies [4], and securities trading [5]).

Blockchain technologies enable different parties who do not 
trust each other to share information through the use of a 
robust consensus protocol which eliminates the need for a 
central authority. Although numerous blockchain platforms are 
currently available, Bitcoin [6] and Ethereum [7] remain the 
most popular, with a market capitalization of over U<S'$15.56n 
as of December 23rd, 2018 [8].

While Bitcoin is mainly a cryptocurrency, Ethereum en-
ables, in addition to cryptocurrency, the creation and running 
of smart contracts (abbreviated as contracts) in a decentralized 
way. An Ethereum contract is a computer code that enables 
users to create their own arbitrary rules for ownership and 
state transition functions. The contract is written in a high 
level language such as Solidity and is compiled into EVM 
(Ethereum Virtual Machine) bytecode.

Since blockchain technologies are offering monetary value 
to their users, attacks on these platforms are mounting [9] 
[10]. The majority of these attacks are profit driven and 
leverage the fact that the identity of an adversary is hidden 
behind the account address. In fact, the pseudo-anonymity of 
an account address is one of the main premises of public 
blockchain platforms such as Ethereum, which is paramount 
since all transactions are publicly available on the blockchain. 
At this point, the only measure that allows combating the 
blockchain abuse is to drop transactions that contain suspicious 
account addresses from malicious users during the transaction 
validation. Yet, as users can and are encouraged to generate 
a new account address per transaction, detecting suspicious 
account addresses remains challenging.

In this work, we propose to leverage a stylometry approach 
to explore the extent to which a deployed contract’s bytecode 
and its high level Solidity source code can contribute to the 
affiliation of account addresses. Since a deployed contract 
contains only its bytecode and does not preserve its source 
code, we obtain the contract’s Solidity source code from 
e th e rs c a n . io  [11], which enables a contract’s author to 
upload the Solidity source code to their platform and link it 
to the deployed contract address on the blockchain.

Previous research on de-anonymization explored the affilia-
tion of Bitcoin addresses by using out-of-network information 
such as IP addresses [12] [13], geo-locations [14], inner 
network information using graph analysis [15], and Bitcoin 
address classification techniques [16] [17]. We take an alterna-
tive approach and leverage the coding style of Ethereum smart 
contracts to attribute the deployed contracts’ code to their 
developers’ account addresses. Within this analysis, we take an 
insight from code authorship attribution techniques that allow 
the identification of a code’s anonymous author based on the 
unique characteristics that describe the author’s coding style 
and allow one to distinguish this author’s code. This style can 
be expressed through layout (e.g., indentations, white spaces), 
lexical (e.g., function lengths, variable names) and semantic 
(e.g., control flow structure, AST depth) levels. Research on 
authorship attribution demonstrates the effectiveness of these 
types of features on accurate attribution of source codes [18] 
[19].

In Ethereum, the contract’s bytecode preserves some of 
the stylistic properties, while the contract’s Solidity source

978-3-903176-24-9 ©  2019 IFIP

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore.  Restrictions apply. 



15th International Conference on Network and Service Management (CNSM 2019)

code preserves the full stylistic properties including the layout 
and lexical properties. However, the nature of Ethereum’s 
source code introduces some challenges, including sensitivity 
to the source code’s length and extensive code reuse (e.g., 
through common interfaces which are used extensively in 
smart contracts). To address these concerns, we introduce 
multiple data refinement heuristics which are based on the 
contract’s Solidity source code components and a feature 
selection technique to extract a small portion of the features. 
We prepare a dataset of verified real-world contract data to 
which we apply these methods and analyze their effect on 
the attribution accuracy. In the analysis phase we focus on 
two commonly used approaches in code attribution: attribution 
based on n-grams and attribution based on a state-of-the-art 
feature set proposed by Caliskan et al. [19]. Our experimental 
results show that it is feasible to attribute Ethereum contracts to 
their corresponding deployers. We were able to achieve 93.5% 
accuracy in attributing source codes, using 3% of the total 
features, and 80% in attributing bytecodes using 13% of the 
total features. In addition, we apply one of our best performing 
heuristics to real world scammers data [20] and successfully 
attribute all of the contracts associated with a specific account 
address.

II. Re l a t e d  w o r k

Blockchain security issues are manifold. Mauro Conti et al. 
[9] surveys attacks in Bitcoin which include: double spending, 
bribary attacks, brute force, transaction malleability, 50% 
hashpower, selfish mining, DDoS attack, and routing attacks to 
name a few. Xiaoqi Li et al. [10] surveys attacks in Ethereum 
which include: use of criminal smart contracts, exploitation of 
smart contracts’ security vulnerabilities, and the DAO attack. 
In this paper we focus on privacy and anonymity issues in 
blockchain.

a) Blockchain addresses clustering: Reid et al. [21] 
analyzed the Bitcoin network with the use of two abstractions: 
’’transaction network” and ”user network” . The ’’transaction 
network” shows the flow of Bitcoins from one transaction to 
the next over time, where each input edge to one transaction 
node is the output edge of the previous transaction. On the 
other hand, the ”user network” shows the flow of Bitcoins 
from one user (payer) to another user (payee); each user is 
represented by a collection of his Bitcoin addresses. Since a 
user can have multiple unconnected Bitcoin addresses, there 
is no accurate process to determine which user is connected to 
which Bitcoin address. Spagnuolo et al. [22] propose to use a 
”change address” , which is the address used to send any funds 
that remain at the end of a transaction, as a method to cluster 
bitcoin addresses to the same user. Chan et al. [17] explore the 
feasibility of affiliating Ethereum addresses using transaction 
graph analytics where transaction data are transferred into a 
graph database and tags are collected from sources such as 
e th e rsca n . io .  Addresses are considered to be affiliated 
if  they share a transaction. Norvil et al. [23] explore unsuper-
vised clustering techniques based on the ssdeep hash similarity 
of Ethereum contracts’ bytecode. To find the context of a

specific cluster the authors analyze the Solidity source code 
for each contract in the cluster and extract the most frequent 
tokens. While hash similarity operates on the contract code 
as a string and can be sensitive to code structure changes, 
our proposed approach considers code stylistic characteristic 
similarities. Attribution based on stylistic characteristics can 
provide high classification accuracy for contract codes that 
seem very different, as long as the stylistic features are similar. 
In addition, as the results of our work suggest, code reuse 
is prevalent in contracts’ code, which can contribute to hash 
similarity bias. We further make use of heuristics that refine 
code similarities to reduce attribution bias.

b) De-anonymization of blockchain addresses using out- 
of-network information: Santamaria et al. [12] showed that 
publicly available metadata which are associated with the 
Bitcoin network can be used to obtain additional information 
regarding a Bitcoin address, e.g., in forums, users provide 
their Bitcoin address in a posted question or as part of 
their message signature, which associates the user’s forum 
identity with his Bitcoin address. Meiklejohn et al. [16] use 
Bitcoin addresses from verifiable sources, e.g., goods vendors 
or exchanges, to follow the transactions and trends related 
to these Bitcoin addresses. Since Bitcoin operates on a P2P 
network, the transaction’s issuer information can be obtained 
from the network infrastructure underlying the peer nodes, 
combined with information on the nodes that participate in 
the transaction relay. Koshy et al. [13] showed that anomalous 
transaction relays can be used to help connect an IP address 
to a Bitcoin address. Kaminsky [24] presents a method of de-
anonymization that connects the transaction’s input Bitcoin 
address to the IP address of the first relayer. This method 
can be actualized if  the attacker can connect to all nodes 
in the Bitcoin network. However the anomalous transaction 
behaviour approach used by Koshy et al. [13] produces 
better de-anonymization results than that of the first relayer 
approach, although anomalous transaction behavior is much 
less frequent than non-anomalous. Biryukov et al. [25] discuss 
a de-anonymization method that uses entry nodes (all the peer 
nodes that the Bitcoin client is connected to) where, if  an 
attacker is connected to an entry node, the IP address can be 
forwarded to him.

While the majority of research has been conducted on 
Bitcoin, it could be applicable to Ethereum as well. Klusman et 
al. [26] explored how the approaches proposed by Biryukov 
et al. [25] and Spagnuolo et al. [22] (both were discussed 
above) can be applied to Ethereum, with some changes to the 
Ethereum network.

No studies were conducted on de-anonymizing Ethereum 
addresses using authorship attribution on Ethereum contracts’ 
code.

c) Authorship attribution: State-of-the-art methods in 
source code authorship attribution rely on low-level informa-
tion such as word or character n-grams. Such features have 
been widely used in [27] [28] as they are able to capture 
stylistic information. At the binary level, the corresponding 
byte-level n-grams have been successfully explored [29] [30].
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More complex features which require additional parsing of 
code were also explored although less frequently due to the 
overhead and complexity. There have been several attempts 
to utilize syntactic (structural) features for author attribution 
tasks. Most notable among these works is the study by 
Caliskan et al. [19] that adopted ASTs (abstract syntax trees) 
for attribution of code. In addition to syntactic features derived 
from AST, the authors use unigrams term frequency. In this 
work, we use a similar feature set, which is modified to support 
the Solidity source code. We refer to it as ”Caliskan features” . 
For more information on various authorship attribution meth-
ods and challenges we refer the interested reader to a survey 
by Vaibhavi et al. [31].

III. Sm a r t  c o n t r a c t  a t t r i b u t i o n

Since anonymity is the main feature of a public blockchain 
technology, the Ethereum platform (as other blockchain imple-
mentations) is designed to maintain no personal identifiable 
information. The only source of data that can be directly 
linked to a blockchain user beyond the cryptographic keys 
are transactions information. Each transaction contains the 
addresses of the transaction’s issuer and receiver. In the case 
when an account address executes a transaction to deploy 
a smart contract, the transaction will contain the account 
address and the deployed contract address. In our approach, we 
explore the feasibility of attributing deployed contracts’ source 
codes and bytecodes to their deployers’ account addresses. 
We turn our attention to code attribution research that showed 
the effectiveness of attribution techniques in their ability to 
identify an author of a given code based on extracted coding 
style. We examine the performance of two commonly used 
approaches in code attribution: attribution based on n-grams 
and attribution based on a customized feature set proposed by 
Caliskan et al. [19].

The process is shown in Figure 1 and includes feature 
extraction, feature selection, data refinement, and classification 
of bytecodes as well as their corresponding source codes. We 
note that data refinement in both source code and bytecode 
is a key step in reducing classification bias and depends 
exclusively on the contract’s Solidity source code.

A. Ethereum code extraction

When a contract is deployed to the blockchain, only its 
bytecode is retained on the chain. To obtain the original 
source code, reverse engineering techniques can be applied 
on the bytecode to a limited degree, which is affected by 
the compilation process into the EVM bytecode, e.g., opti-
mizing the contract’s bytecode for performance may change 
the contract’s code structure while maintaining the same 
functionality, human readable variable names are not required 
by the EVM and are encoded, and the layout information of the 
source code is removed. This makes the reverse engineering 
of the exact original source code challenging. Some tools 
were proposed to reverse engineer a contract’s bytecode to 
a human readable source code with very limited results, 
e.g., porosity [32], and radare2 [33]. e th e rs c a n . io  is an

Ethereum blockchain explorer platform [11] which provides a 
range of capabilities that include the retrieval of contracts’ 
source codes in specific cases, without the use of reverse 
engineering. It does so by providing an API to upload the 
source code to e the rscan . io .  The source code is then 
compiled into bytecode and is compared with the deployed 
contract’s bytecode. If the two are equal, the contract’s source 
code is considered verified. This manual pairing is entirely 
optional, and is not reflected in the Ethereum blockchain. In 
our analysis, we rely exclusively on verified contracts that 
provide both bytecode and source code representations. We 
further disassemble the bytecode into opcodes for easier pars-
ing. Since Solidity is the most commonly used programming 
language for writing Ethereum contracts, we focus our analysis 
exclusively on contracts written in Solidity.

B. Data refinement heuristics

The tendency of programmers to reuse their own code 
components and those written by others can negatively affect 
the code’s classification accuracy [34] [35]. Solidity, like most 
programming languages, enables the creation of code libraries 
for common algorithms reuse [36]. These libraries can be 
created in a local or a remote contract. In the various Solidity 
contracts’ source codes that we examined, we located only 
a handful of library calls. Instead, the common approach 
is to copy necessary code into a contract and modify it as 
required. We examined the top 10 similarities in our Solidity 
source codes’ dataset and found that the common components 
include (in descending order) ERC23 contract interfaces, safe 
math libraries, ownership contract implementations, ERC20 
contract implementations, token recipient interface implemen-
tations, and pausable interface implementations. The results 
show that most similarities are attributed to token standards 
implementations (e.g., the evolution of token standards from 
EC20 to EC23 which introduced a new code template to copy 
and reuse) as well as a generic safe math functionality. This 
introduces a large amount of duplicate code and increases the 
similarity between contracts.

To avoid unnecessary attribution bias and reduce the amount 
of common code in the contracts, we consider several data 
refinement heuristics. These heuristics depend on the con-
tract’s Solidity source code and provide the code similarity 
assessment at the component granularity level, such as con-
tracts, libraries, and interfaces. Note that Ethereum supports 
inheritance and therefore a single program’s source code may 
include multiple contracts that inherit characteristics from each 
other.

Before the refinement is applied, each contract’s source code 
is split into its individual components. Similarity between 
splits is assessed using the Levenshtein distance metric. To 
reduce the number of pairwise comparisons, each split is 
compared to another split only if  their size differs by at 
least 10%. Two compared splits are considered similar if  their 
similarity score is 80% or higher. From each similarity group 
we retain a single split in an arbitrary way and delete all other 
similar splits according to one of the following heuristics:
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Fig. 1: The high-level flow of attributing Ethereum smart contacts

1) Considers splits’ similarity between authors as well as 
within an author - if  any contract’s split was found to be 
similar, and hence removed, all of the contract’s splits 
are removed as well. The remaining splits belong to con-
tracts without any similarities. All the remaining splits 
per contract are merged to produce a single compilable 
contract source code.

2) Considers splits’ similarity between authors as well as 
within an author - if  any contract’s split was found to be 
similar, and hence removed, all of the contract’s splits 
are removed as well. The remaining splits belong to 
contracts without any similarities. Each split is treated 
as a full contract source code for classification purposes.

3) Considers splits’ similarity between authors as well as 
within an author - Only contracts which had all of their 
splits removed (due to being similar to other splits) are 
deleted. The remaining splits represent full or partial 
contracts without any similarities. All the remaining 
splits per contract are merged to produce a full or partial 
contract source code which may be non-compilable due 
to its partialness. This can prevent the extraction of ASTs 
that are required for the Caliskan feature extraction. For 
this reason we only extract unigram features. For each 
merged source code we retrieve the opcodes correspond-
ing to the original full source code before the splits’ 
removal.

4) Considers splits’ similarity between authors as well as 
within an author - Only contracts which had all of their 
splits removed (due to being similar to other splits) are 
deleted. Each split is treated as a full contract source 
code for classification purposes.

5) Considers splits’ similarity only between authors - if 
any contract’s split was found to be similar, and hence

removed, all of the contract’s splits are removed as well. 
The remaining splits belong to contracts without any 
similarities. All the remaining splits per contract are 
merged to produce a single compilable contract source 
code.

6) Considers splits’ similarity only between authors - if 
any contract’s split was found to be similar, and hence 
removed, all of the contract’s splits are removed as well. 
The remaining splits belong to contracts without any 
similarities. Each split is treated as a full contract source 
code for classification purposes.

7) Considers splits’ similarity only between authors - Only 
contracts which had all of their splits removed (due to 
being similar to other splits) are deleted. The remaining 
splits represent full or partial contracts without any 
similarities. All the remaining splits per contract are 
merged to produce a full or partial contract source code 
which may be non-compilable due to its partialness.

8) Considers splits’ similarity only between authors - Only 
contracts which had all of their splits removed (due to 
being similar to other splits) are deleted. The remaining 
splits represent full or partial contracts without any 
similarities. All the remaining splits per contract are 
merged to produce a full or partial contract source code 
which may be non-compilable due to its partialness.

C. Feature extraction

For our analysis we adopt two feature sets that are widely 
used in code attribution studies and which are treated as 
benchmark sets: n-gram features employed by [37]-[40], and 
a feature set derived by Caliskan et al. [19], which is used in 
the majority of recent studies [18] [41].

N-grams are derived at the lexical level and thus primarily
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TABLE I: Dataset statistics

Author
count

Contract
count

Avg samples 
per author/(std)

Avg source 
code len/(std)

Avg source 
code LOC/(std)

Avg byte
code len/(std)

Min
contracts/
author

Selected4contracts 1071 8915 8.32 / (12.19) 114767.76 / (196095.32) 3330.93 / (5694.51) 185421.86 / (287453.45) 4

represent layout characteristics of code. While the Caliskan et 
al. [19] feature set includes lexical features (e.g., indentation, 
white space use, braces placements, statistical distribution of 
variable lengths and capitalization), and syntactic features that 
outline the external structural organization of the code and 
include features which are derived from an AST, e.g., code 
length, nesting levels, and branching.

To obtain n-gram features we tokenize both source code 
files and opcode files (extracted from bytecodes) using space, 
carriage return, new line, and tab. The Caliskan et al. feature 
set was originally developed for C and C++ programs; we thus 
map these features to the corresponding Solidity features.

D. Classification

The Random Forest algorithm has recently been gaining 
popularity in code authorship attribution [19]. The algorithm, 
which is an ensemble of decision trees, performs well in the 
scenarios where the goal is to identify the most likely author 
of a code fragment. Further, once trained, it provides the 
best trade-off between accuracy and processing time, hence 
outperforming other models, including neural networks.

IV. Da t a

Since anonymity is the main feature of all blockchain 
technologies, there are no datasets available for research 
that identifies users and their corresponding transactions or 
contracts (in the case of Ethereum). As a result there is 
no ’’ground truth” data for our experimentation purposes. 
To ensure a comprehensive evaluation of the feasibility of 
the proposed approach, we constructed a validation dataset 
with known relations between users (as represented by their 
account address) and contracts. Generally, it is possible for 
an individual user to generate multiple transactions under 
different keys. In this work we adopt a conservative approach 
and only collect users with multiple contracts issued under the 
same key. For our analysis, we collected 21,825 verified con-
tracts by crawling e th e rs c a n . io ,  which we made publicly 
available1. We employed a web crawler to scan the verified 
contracts’ HTML and retrieved their source code with the 
retained layout and lexical features, which are critical for the 
source code authorship attribution. For each of the retrieved 
contracts, we also extracted the corresponding bytecode and 
disassembled it to obtain its opcodes.

Our dataset contained a large number of authors with 
a single contract. Since having such a limited number of 
contracts limits the possibility of validating attribution results, 
we filter out authors that have fewer than 4 contracts. Table I 
shows the statistics of our resulting dataset.

1 https://github.com/shomzy/Lino1910
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^Random forest selector (bytecode) ....Mutual information selector (bytecode)
— Random forest selector (Caliskan) ....Mutual information selector (Caliskan)
— Random forest selector (source code) ....Mutual information selector (source code)

Fig. 2: Feature selectors comparisons

V. Ev a l u a t i o n

We implement the proposed attribution approach using 
Python’s scikit-learn module [42]. We use a Random Forest 
classifier with a 4-fold stratified cross validation strategy.

The objectives of our experimental evaluation are:
1) understand the effectiveness of attribution features for 

Ethereum contracts’ attribution.
2) Explore the ability of our approach to accurately at-

tribute contacts to known authors.

A. Data refinement

Table II shows the effects of the refinement heuristics on 
our dataset. One noticeable difference between each heuristic 
is the amount of retained data. Heuristics in which similarities 
are considered only between authors find less common code 
between contracts and as a result retain more splits. On the 
other hand, heuristics in which similarities are considered 
within authors find more common code between contracts. A 
possible explanation is that authors are more likely to reuse 
their own code, e.g., to write and deploy different versions of 
the same contract, or to reuse their own components.

The least amount of code is retained with heuristic 1. This 
is the most conservative approach that removes all similarities 
between, as well as within authors and as a result maintains 
the least number of authors. Note that for our analysis we 
choose to retain authors that have at least 4 contracts after 
applying the heuristic.

On the other extreme, heuristic 8 provides the highest data 
retention. In this approach, only similarities between authors 
are removed. Each of the remaining splits is being treated as 
a ’ full contract” , which results in retaining more authors with 
at least 4 contracts. This heuristic can be used in cases where 
obtaining sufficient data is not feasible. Yet, even with this
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TABLE II: Heuristics refinement details

Heuristic Program
type

Feature
type

Retained 
data %

Author
count

Avg samples 
per author/(std)

Source code 
avg size/(std)

Source code 
avg LOC/(std)

Top/total
features

Bytecode Unigram 0.50% 34 6 / (2.48) 94371 / (80672.32) 1500 / 11590
i Source code Unigram 0.50% 34 6 / (2.48) 45162.41 / (53276.11) 1208 / (1345.128) 647 / 21550

Source code Caliskan 0.50% 34 6 / (2.48) 45162.41 / (53276.11) 1208 / (1345.128) 700 / 34987
2 Source code splits Unigram 1% 76 6.88 / (3.433) 22917.43 / (26892.87) 663.67 / (761.45) 1000 / 29623

3 Bytecode Unigram 3.50% 283 6.24 / (3.723) 149305.82/(127928.95) 6000 / 42768
Source code Unigram 3.50% 283 6.24 / (3.723) 41467.36 / (39868.53) 1186 / (1070.32) 5000 / 135563

4 Source code splits Unigram 9% 475 9.65 /(7.893) 33281.7 / (34426.26) 958.05 / (929.51) 6000 / 175427
Bytecode Unigram 1.80% 106 8.39 / (9.173) 144171.77 / (195275.03) 3000 / 21422

5 Source code Unigram 1.80% 106 8.39 / (9.173) 76077.88 / (142905.22) 2091.55 / (3900.64) 1000 / 49030
Source code Caliskan 1.80% 106 8.39 / (9.173) 76077.88 / (142905.22) 2091.55 / (3900.64) 3000 / 91315

6 Source code splits Unigram 4.20% 136 15.48 / (23.673) 59369.63 / (127319.81) 1660.75 / (3498.86) 1600 / 52515

7 Bytecode Unigram 9.13% 599 7.66 / (7.028) 180939.86 / (212620.36) 8000 / 57508
Source code Unigram 9.13% 599 7.66 / (7.028) 66135.62/(108244.7) 1894.51 / (3138.6) 6000 / 196478

8 Source code splits Unigram 23.50% 658 17.94 / (29.373) 61984.62 / (104176.03) 1787.22 / (3040.22) 7000 / 203899

liberal approach, the resulting set contains only 658 authors 
which are 61% of the original dataset.

B. Feature selection

All feature sets that we employ in our study generate large 
and sparse feature vectors mostly due to their heavy use of 
unigram term frequencies. In many cases, such feature vectors 
lead to over-fitting. To avoid biased classification results, we 
examine two feature selection methods: Mutual information 
analysis and Random Forest importance-based.

Figure 2 shows that Random Forest importance-based fea-
ture selection consistently provides up to 5% higher classifi-
cation accuracy compared to mutual information analysis. We 
therefore apply this method to further reduce the number of 
features for our analysis.

In order to find the minimal feature set that provides 
sufficient classification accuracy, we employ the following 
method: we incrementally select the top K ranked features and 
calculate the classification’s accuracy based on 4-fold cross 
validation. The results are given in Figure 3. It is clear from 
the analysis that the accuracy quickly plateaus for all feature 
sets. The best trade-off between the number of features (hence 
size of corresponding feature vectors) and accuracy happens 
at 8000 top ranked features for opcode (bytecode) unigrams 
(13% of total features), 8000 top ranked features for source 
code unigrams (3% of total features), and 10000 top features 
for the Caliskan feature set (2% of total features). Table III 
shows the classification results, before and after applying a 
feature selection, per feature set. Although the accuracy does 
not change, the number of features retained for attribution 
analysis is significantly smaller. We use these top ranked

TABLE III: Evaluation results before and after feature selec-
tion

Program
type

Feature
set

Total
features Accuracy

Top
ranked
features

Accuracy

Source code Unigram 231553 78.04% 8000 (3%) 79.77%
Source code Caliskan 441963 76.52% 10000 (2%) 77.87%
Bytecode Unigram 63363 64.05% 8000 (13%) 65.69%

feature ratios for our following analysis.

C. Attribution results

We perform the following per heuristic: refine the dataset 
as dictated by the heuristic, extract the feature sets using the 
Random Forest importance-based feature selector, and refine 
the top features according to the ratios described above. Table 
II provides the statistics’ details.

We next perform a 4-fold stratified cross validation on each 
of the refined feature sets, using a Random Forest classifier. 
Table IV shows the attribution accuracy results per heuristic. 
The column ’’Accuracy after feature selection” refers to the 
accuracy on the refined feature set which was extracted from 
Selected4contracts (rightmost column in Table III).

In most heuristics, the removal of similar code from the 
contracts results in a significantly higher attribution classi-
fication rate as compared to before applying the heuristics 
(as summarized in column ’ accuracy after feature selection” ). 
The highest rate (93.5%) was achieved with source code 
unigrams, and the second best result was obtained with the 
Caliskan’s feature set (90.9%). The heuristics that produce 
partial contracts provide significantly more data. However, 
the type of analysis that can be performed is limited since 
no corresponding partial bytecode, or ASTs (used by the 
Caliskan’s feature set) can be extracted. These cases are 
labelled with a dash ’-’ .

Heuristic 5 shows the highest accuracy in the overall cate-
gories (excluding source code splits). It does this at the cost of 
removing all contracts that have any similarities, which results 
in the removal of many authors. Heuristic 7 has the second 
best performance. It removes only the similar components 
of the source code and merges the remaining components. 
Although it provides a slightly lower accuracy than Heuristic 
5, it retains 6 times more authors.

Comparing heuristics, we see that caution should be ex-
ercised as to which similarities should be removed. The 
single refinement property that distinguishes heuristics 1-4 and 
heuristics 5-8 is where to search for similarities. The former 
searches for similarities between, as well as within authors 
while the latter searches for similarities only between authors.
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TABLE IV: Classification accuracy per heuristic
Heuristic accuracy

Program
type

Feature
set

Accuracy after 
feature selection i 2 3 4 5 6 7 8

Bytecode Unigram 65.69% 57.69% 57.09% 79.98% 75.18% -
Source code Unigram 79.77% 81.79% 72.31% 93.51% 88.47% -
Source code Caliskan 77.87% 78.61% 90.91% -
Source code splits Unigram 68.78% 60.38% 90.62% 87.23%

O f n t f i O f ' n t o o f o t c o f ' n t f i O f ' n '

Top Features Count

(a) Byte code
0.9

0.8

&0.7

0.5

0.4

Top Features Count

(b) Source code

Top Features Count

(c) Caliskan

Fig. 3: Finding top ranked features using incremental steps

The preservation of similarities within the authors results in 
features that more accurately capture each author’s preference 
of using specific code constructs over others. Further, refining 
less data results in additional and larger samples, which also 
contributes to higher accuracy.

We note that, while the approach that is based on the n-gram 
features provide the higher accuracy, it is also susceptible to 
manipulations of coding constructs’ names. In contrast, the 
approach that is based on the Caliskan features supports more 
robust features such as ASTs which can be more resilient

in such cases at the cost of a slightly lower classification 
accuracy.

VI. At t r i b u t i o n  o f  s c a m s

The results show the effectiveness of our approach for 
attributing unknown smart contracts to their corresponding au-
thors. To examine our approach in the underground scammers’ 
community, we further explore the attribution of real-world 
Ethereum scams.

Etherscamdb [20] is an open source database that keeps 
track of all the current Ethereum scams. The scam information 
in the site is diverse and contains scam categories like Fake 
ICO, Phishing, Scamming, and Scam. We extract contracts 
based on the account’s address and the contract’s address. For 
a given malicious contract’s address, we extract all contracts 
which were deployed by the contract’s deployer. Symmetri-
cally, for each malicious account address, we extract all of its 
deployed contracts (if any) and consider them to be malicious 
(see Algorithm 1).

Algorithm 1 Retrieve scammers data from EtherscamDB

Require: ScmDBaddresses =  - Etherscamdb’s
malicious addresses;

Ensure: Scmauthors =  (au1,au2, ...) - contract related ma-
licious authors. Each author contains SC =  (scl7sc2, ...) 
were sci is a contract’s address;
Scmauthors ^  {}
A
for all ai in ScmDBaddr do

if ai is account address then
A.Add(ai)

else if ai is a contract’s address then
T ^  etherscan.get_all_transactions(ai)
aaddr ^  get_contract_creator_account_address(T)
A.Add(aaddr )

end if 
end for
for all ai in A do

T ^  etherscan.get_all_transactions(ai) 
acontracts ^  get_contract_creation_addresses(T)
Scm authors .Add({ai i acontracts})

end for
return Scmauthors

To fetch the account address of a malicious contract’s 
deployer or the contract’s addresses deployed by a malicious 
account address, we use e the rscan . io .  To implement
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TABLE V: Scammers dataset

Num
of
authors

Total
num
of
contracts

Max
contracts/
author

Avg 
num of 
contracts/ 
author

Source 
code avg 
bytesize

Source 
code avg
l o c

source
code/
opcode

22 68 20 3.09 7379.98 212.91

the algorithm, for each address that was extracted from 
Etherscamdb, we use e th e r e s c a n . io ’s API2 to find all 
the transactions that are related to a requested address. We 
provide a malicious address and receive a transaction list. 
For each transaction we examine the results field. An empty 
”To” field indicates that the transaction is used to deploy a 
contract whose address is provided in the ”contractAddress” 
field. When ”contractAddress” is the same as the provided 
malicious address, this indicates that the provided address is 
a contract address. If it is different, this indicates that the 
provided malicious address is an account’s address and the 
”contractAddress” value is the deployed contract’s address. If 
the results field is empty, an account or contract was not found 
at the specified address and is ignored.

The algorithm’s result set contains all malicious related 
authors with their deployed contracts’ addresses. For each 
of the contract’s addresses, we extract its opcode and source 
code (if available in e th e r s c a n . i o ’s verified contracts). 
The resulting scammers dataset are shown in Table V.

We cross referenced the scammers data and our 
Selected4contracts, presumably, benign dataset. One account’s 
address (0x0042bd345e43bd151fa563c2bc8fa22bda507104) 
was contained in both datasets. It contained 8 verified 
contracts in our collected scammers dataset of which, 5 
contracts were found in our Selected4contracts’ benign 
dataset. The 5 shared contracts as well as the 3 unseen 
contracts were attributed correctly in the source code and 
bytecode datasets.

VII. Co n c l u s i o n s

Blockchains provide pseudo-anonymity for users by provid-
ing public addresses which can not be easily linked back to 
the users. In this work, we propose to leverage a stylometry 
approach to explore the extent to which a deployed smart 
contract’s source code can contribute to the affiliation of ac-
count addresses. To address this, we prepare a dataset of real- 
world contract data; design and implement feature selection, 
extraction techniques, data refinement heuristics; and examine 
their effect on attribution accuracy. We further use these 
techniques to test the classification of real-world scammers 
data. Our experimental results show that it is feasible to 
attribute Ethereum contracts to their corresponding deployers. 
We were able to achieve 93.5% accuracy in attributing source 
codes, using 3% of the total features, and 80% in attributing 
bytecodes using 13% of the total features. In addition, we 
apply one of our best performing heuristics to real world

2api.etherscan.io/api?module=account&action=txlist&address= (address)

scammers data and successfully attribute all of the contracts 
associated with a specific account address.
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