
15th International Conference on Network and Service Management (CNSM 2019)

Exploring Ethereum’s Blockchain Anonymity Using
Smart Contract Code Attribution

Shlomi Linoy
University of New Brunswick

Fredericton, Canada
slinoy@unb.ca

Natalia Stakhanova
University of Saskatchewan

Saskatoon, Canada
natalia@cs.usask.ca

Alina Matyukhina
University of New Brunswick

Fredericton, Canada
amatyukh@unb.ca

Abstract—Blockchain users are identified by addresses (public
keys), which cannot be easily linked back to them without out-
of-network information. This provides pseudo-anonymity, which
is amplified when the user generates a new address for each
transaction. Since all transaction history is visible to all users in
public blockchains, finding affiliation between related addresses
can hurt pseudo-anonymity. Such affiliation information can
be used to discriminate against addresses that were found to
be related to a specific group, or can even lead to the de-
anonymization of all addresses in the associated group, if out-
of-network information is available on a few addresses in that
group. In this work we propose to leverage a stylometry approach
on Ethereum’s deployed smart contracts’ bytecode and high level
source code, which is publicly available by third party platforms.
We explore the extent to which a deployed smart contract’s
source code can contribute to the affiliation of addresses. To
address this, we prepare a dataset of real-world Ethereum
smart contracts data, which we make publicly available; design
and implement feature selection, extraction techniques, data
refinement heuristics, and examine their effect on attribution
accuracy. We further use these techniques to test the classification
of real-world scammers data.

Keywords -blockchain, Ethereum, smart contracts, distributed
ledger, Ethereum, traceability, authorship attribution

I. I n t r o d u c t i o n

With the rising popularity of blockchain technologies, their
practical applications in the industry sectors are expanding
as well (healthcare [1], government [2], IoT [3], insurance
policies [4], and securities trading [5]).

Blockchain technologies enable different parties who do not
trust each other to share information through the use of a
robust consensus protocol which eliminates the need for a
central authority. Although numerous blockchain platforms are
currently available, Bitcoin [6] and Ethereum [7] remain the
most popular, with a market capitalization of over U<S'$15.56n
as of December 23rd, 2018 [8].

While Bitcoin is mainly a cryptocurrency, Ethereum en-
ables, in addition to cryptocurrency, the creation and running
of smart contracts (abbreviated as contracts) in a decentralized
way. An Ethereum contract is a computer code that enables
users to create their own arbitrary rules for ownership and
state transition functions. The contract is written in a high
level language such as Solidity and is compiled into EVM
(Ethereum Virtual Machine) bytecode.

Since blockchain technologies are offering monetary value
to their users, attacks on these platforms are mounting [9]
[10]. The majority of these attacks are profit driven and
leverage the fact that the identity of an adversary is hidden
behind the account address. In fact, the pseudo-anonymity of
an account address is one of the main premises of public
blockchain platforms such as Ethereum, which is paramount
since all transactions are publicly available on the blockchain.
At this point, the only measure that allows combating the
blockchain abuse is to drop transactions that contain suspicious
account addresses from malicious users during the transaction
validation. Yet, as users can and are encouraged to generate
a new account address per transaction, detecting suspicious
account addresses remains challenging.

In this work, we propose to leverage a stylometry approach
to explore the extent to which a deployed contract’s bytecode
and its high level Solidity source code can contribute to the
affiliation of account addresses. Since a deployed contract
contains only its bytecode and does not preserve its source
code, we obtain the contract’s Solidity source code from
e th e rs c a n . io [11], which enables a contract’s author to
upload the Solidity source code to their platform and link it
to the deployed contract address on the blockchain.

Previous research on de-anonymization explored the affilia-
tion of Bitcoin addresses by using out-of-network information
such as IP addresses [12] [13], geo-locations [14], inner
network information using graph analysis [15], and Bitcoin
address classification techniques [16] [17]. We take an alterna-
tive approach and leverage the coding style of Ethereum smart
contracts to attribute the deployed contracts’ code to their
developers’ account addresses. Within this analysis, we take an
insight from code authorship attribution techniques that allow
the identification of a code’s anonymous author based on the
unique characteristics that describe the author’s coding style
and allow one to distinguish this author’s code. This style can
be expressed through layout (e.g., indentations, white spaces),
lexical (e.g., function lengths, variable names) and semantic
(e.g., control flow structure, AST depth) levels. Research on
authorship attribution demonstrates the effectiveness of these
types of features on accurate attribution of source codes [18]
[19].

In Ethereum, the contract’s bytecode preserves some of
the stylistic properties, while the contract’s Solidity source

978-3-903176-24-9 © 2019 IFIP

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

code preserves the full stylistic properties including the layout
and lexical properties. However, the nature of Ethereum’s
source code introduces some challenges, including sensitivity
to the source code’s length and extensive code reuse (e.g.,
through common interfaces which are used extensively in
smart contracts). To address these concerns, we introduce
multiple data refinement heuristics which are based on the
contract’s Solidity source code components and a feature
selection technique to extract a small portion of the features.
We prepare a dataset of verified real-world contract data to
which we apply these methods and analyze their effect on
the attribution accuracy. In the analysis phase we focus on
two commonly used approaches in code attribution: attribution
based on n-grams and attribution based on a state-of-the-art
feature set proposed by Caliskan et al. [19]. Our experimental
results show that it is feasible to attribute Ethereum contracts to
their corresponding deployers. We were able to achieve 93.5%
accuracy in attributing source codes, using 3% of the total
features, and 80% in attributing bytecodes using 13% of the
total features. In addition, we apply one of our best performing
heuristics to real world scammers data [20] and successfully
attribute all of the contracts associated with a specific account
address.

II. Re l a t e d w o r k

Blockchain security issues are manifold. Mauro Conti et al.
[9] surveys attacks in Bitcoin which include: double spending,
bribary attacks, brute force, transaction malleability, 50%
hashpower, selfish mining, DDoS attack, and routing attacks to
name a few. Xiaoqi Li et al. [10] surveys attacks in Ethereum
which include: use of criminal smart contracts, exploitation of
smart contracts’ security vulnerabilities, and the DAO attack.
In this paper we focus on privacy and anonymity issues in
blockchain.

a) Blockchain addresses clustering: Reid et al. [21]
analyzed the Bitcoin network with the use of two abstractions:
’’transaction network” and ”user network” . The ’’transaction
network” shows the flow of Bitcoins from one transaction to
the next over time, where each input edge to one transaction
node is the output edge of the previous transaction. On the
other hand, the ”user network” shows the flow of Bitcoins
from one user (payer) to another user (payee); each user is
represented by a collection of his Bitcoin addresses. Since a
user can have multiple unconnected Bitcoin addresses, there
is no accurate process to determine which user is connected to
which Bitcoin address. Spagnuolo et al. [22] propose to use a
”change address” , which is the address used to send any funds
that remain at the end of a transaction, as a method to cluster
bitcoin addresses to the same user. Chan et al. [17] explore the
feasibility of affiliating Ethereum addresses using transaction
graph analytics where transaction data are transferred into a
graph database and tags are collected from sources such as
e th e rsca n . io . Addresses are considered to be affiliated
if they share a transaction. Norvil et al. [23] explore unsuper-
vised clustering techniques based on the ssdeep hash similarity
of Ethereum contracts’ bytecode. To find the context of a

specific cluster the authors analyze the Solidity source code
for each contract in the cluster and extract the most frequent
tokens. While hash similarity operates on the contract code
as a string and can be sensitive to code structure changes,
our proposed approach considers code stylistic characteristic
similarities. Attribution based on stylistic characteristics can
provide high classification accuracy for contract codes that
seem very different, as long as the stylistic features are similar.
In addition, as the results of our work suggest, code reuse
is prevalent in contracts’ code, which can contribute to hash
similarity bias. We further make use of heuristics that refine
code similarities to reduce attribution bias.

b) De-anonymization of blockchain addresses using out-
of-network information: Santamaria et al. [12] showed that
publicly available metadata which are associated with the
Bitcoin network can be used to obtain additional information
regarding a Bitcoin address, e.g., in forums, users provide
their Bitcoin address in a posted question or as part of
their message signature, which associates the user’s forum
identity with his Bitcoin address. Meiklejohn et al. [16] use
Bitcoin addresses from verifiable sources, e.g., goods vendors
or exchanges, to follow the transactions and trends related
to these Bitcoin addresses. Since Bitcoin operates on a P2P
network, the transaction’s issuer information can be obtained
from the network infrastructure underlying the peer nodes,
combined with information on the nodes that participate in
the transaction relay. Koshy et al. [13] showed that anomalous
transaction relays can be used to help connect an IP address
to a Bitcoin address. Kaminsky [24] presents a method of de-
anonymization that connects the transaction’s input Bitcoin
address to the IP address of the first relayer. This method
can be actualized if the attacker can connect to all nodes
in the Bitcoin network. However the anomalous transaction
behaviour approach used by Koshy et al. [13] produces
better de-anonymization results than that of the first relayer
approach, although anomalous transaction behavior is much
less frequent than non-anomalous. Biryukov et al. [25] discuss
a de-anonymization method that uses entry nodes (all the peer
nodes that the Bitcoin client is connected to) where, if an
attacker is connected to an entry node, the IP address can be
forwarded to him.

While the majority of research has been conducted on
Bitcoin, it could be applicable to Ethereum as well. Klusman et
al. [26] explored how the approaches proposed by Biryukov
et al. [25] and Spagnuolo et al. [22] (both were discussed
above) can be applied to Ethereum, with some changes to the
Ethereum network.

No studies were conducted on de-anonymizing Ethereum
addresses using authorship attribution on Ethereum contracts’
code.

c) Authorship attribution: State-of-the-art methods in
source code authorship attribution rely on low-level informa-
tion such as word or character n-grams. Such features have
been widely used in [27] [28] as they are able to capture
stylistic information. At the binary level, the corresponding
byte-level n-grams have been successfully explored [29] [30].

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

More complex features which require additional parsing of
code were also explored although less frequently due to the
overhead and complexity. There have been several attempts
to utilize syntactic (structural) features for author attribution
tasks. Most notable among these works is the study by
Caliskan et al. [19] that adopted ASTs (abstract syntax trees)
for attribution of code. In addition to syntactic features derived
from AST, the authors use unigrams term frequency. In this
work, we use a similar feature set, which is modified to support
the Solidity source code. We refer to it as ”Caliskan features” .
For more information on various authorship attribution meth-
ods and challenges we refer the interested reader to a survey
by Vaibhavi et al. [31].

III. Sm a r t c o n t r a c t a t t r i b u t i o n

Since anonymity is the main feature of a public blockchain
technology, the Ethereum platform (as other blockchain imple-
mentations) is designed to maintain no personal identifiable
information. The only source of data that can be directly
linked to a blockchain user beyond the cryptographic keys
are transactions information. Each transaction contains the
addresses of the transaction’s issuer and receiver. In the case
when an account address executes a transaction to deploy
a smart contract, the transaction will contain the account
address and the deployed contract address. In our approach, we
explore the feasibility of attributing deployed contracts’ source
codes and bytecodes to their deployers’ account addresses.
We turn our attention to code attribution research that showed
the effectiveness of attribution techniques in their ability to
identify an author of a given code based on extracted coding
style. We examine the performance of two commonly used
approaches in code attribution: attribution based on n-grams
and attribution based on a customized feature set proposed by
Caliskan et al. [19].

The process is shown in Figure 1 and includes feature
extraction, feature selection, data refinement, and classification
of bytecodes as well as their corresponding source codes. We
note that data refinement in both source code and bytecode
is a key step in reducing classification bias and depends
exclusively on the contract’s Solidity source code.

A. Ethereum code extraction

When a contract is deployed to the blockchain, only its
bytecode is retained on the chain. To obtain the original
source code, reverse engineering techniques can be applied
on the bytecode to a limited degree, which is affected by
the compilation process into the EVM bytecode, e.g., opti-
mizing the contract’s bytecode for performance may change
the contract’s code structure while maintaining the same
functionality, human readable variable names are not required
by the EVM and are encoded, and the layout information of the
source code is removed. This makes the reverse engineering
of the exact original source code challenging. Some tools
were proposed to reverse engineer a contract’s bytecode to
a human readable source code with very limited results,
e.g., porosity [32], and radare2 [33]. e th e rs c a n . io is an

Ethereum blockchain explorer platform [11] which provides a
range of capabilities that include the retrieval of contracts’
source codes in specific cases, without the use of reverse
engineering. It does so by providing an API to upload the
source code to e the rscan . io . The source code is then
compiled into bytecode and is compared with the deployed
contract’s bytecode. If the two are equal, the contract’s source
code is considered verified. This manual pairing is entirely
optional, and is not reflected in the Ethereum blockchain. In
our analysis, we rely exclusively on verified contracts that
provide both bytecode and source code representations. We
further disassemble the bytecode into opcodes for easier pars-
ing. Since Solidity is the most commonly used programming
language for writing Ethereum contracts, we focus our analysis
exclusively on contracts written in Solidity.

B. Data refinement heuristics

The tendency of programmers to reuse their own code
components and those written by others can negatively affect
the code’s classification accuracy [34] [35]. Solidity, like most
programming languages, enables the creation of code libraries
for common algorithms reuse [36]. These libraries can be
created in a local or a remote contract. In the various Solidity
contracts’ source codes that we examined, we located only
a handful of library calls. Instead, the common approach
is to copy necessary code into a contract and modify it as
required. We examined the top 10 similarities in our Solidity
source codes’ dataset and found that the common components
include (in descending order) ERC23 contract interfaces, safe
math libraries, ownership contract implementations, ERC20
contract implementations, token recipient interface implemen-
tations, and pausable interface implementations. The results
show that most similarities are attributed to token standards
implementations (e.g., the evolution of token standards from
EC20 to EC23 which introduced a new code template to copy
and reuse) as well as a generic safe math functionality. This
introduces a large amount of duplicate code and increases the
similarity between contracts.

To avoid unnecessary attribution bias and reduce the amount
of common code in the contracts, we consider several data
refinement heuristics. These heuristics depend on the con-
tract’s Solidity source code and provide the code similarity
assessment at the component granularity level, such as con-
tracts, libraries, and interfaces. Note that Ethereum supports
inheritance and therefore a single program’s source code may
include multiple contracts that inherit characteristics from each
other.

Before the refinement is applied, each contract’s source code
is split into its individual components. Similarity between
splits is assessed using the Levenshtein distance metric. To
reduce the number of pairwise comparisons, each split is
compared to another split only if their size differs by at
least 10%. Two compared splits are considered similar if their
similarity score is 80% or higher. From each similarity group
we retain a single split in an arbitrary way and delete all other
similar splits according to one of the following heuristics:

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

Fig. 1: The high-level flow of attributing Ethereum smart contacts

1) Considers splits’ similarity between authors as well as
within an author - if any contract’s split was found to be
similar, and hence removed, all of the contract’s splits
are removed as well. The remaining splits belong to con-
tracts without any similarities. All the remaining splits
per contract are merged to produce a single compilable
contract source code.

2) Considers splits’ similarity between authors as well as
within an author - if any contract’s split was found to be
similar, and hence removed, all of the contract’s splits
are removed as well. The remaining splits belong to
contracts without any similarities. Each split is treated
as a full contract source code for classification purposes.

3) Considers splits’ similarity between authors as well as
within an author - Only contracts which had all of their
splits removed (due to being similar to other splits) are
deleted. The remaining splits represent full or partial
contracts without any similarities. All the remaining
splits per contract are merged to produce a full or partial
contract source code which may be non-compilable due
to its partialness. This can prevent the extraction of ASTs
that are required for the Caliskan feature extraction. For
this reason we only extract unigram features. For each
merged source code we retrieve the opcodes correspond-
ing to the original full source code before the splits’
removal.

4) Considers splits’ similarity between authors as well as
within an author - Only contracts which had all of their
splits removed (due to being similar to other splits) are
deleted. Each split is treated as a full contract source
code for classification purposes.

5) Considers splits’ similarity only between authors - if
any contract’s split was found to be similar, and hence

removed, all of the contract’s splits are removed as well.
The remaining splits belong to contracts without any
similarities. All the remaining splits per contract are
merged to produce a single compilable contract source
code.

6) Considers splits’ similarity only between authors - if
any contract’s split was found to be similar, and hence
removed, all of the contract’s splits are removed as well.
The remaining splits belong to contracts without any
similarities. Each split is treated as a full contract source
code for classification purposes.

7) Considers splits’ similarity only between authors - Only
contracts which had all of their splits removed (due to
being similar to other splits) are deleted. The remaining
splits represent full or partial contracts without any
similarities. All the remaining splits per contract are
merged to produce a full or partial contract source code
which may be non-compilable due to its partialness.

8) Considers splits’ similarity only between authors - Only
contracts which had all of their splits removed (due to
being similar to other splits) are deleted. The remaining
splits represent full or partial contracts without any
similarities. All the remaining splits per contract are
merged to produce a full or partial contract source code
which may be non-compilable due to its partialness.

C. Feature extraction

For our analysis we adopt two feature sets that are widely
used in code attribution studies and which are treated as
benchmark sets: n-gram features employed by [37]-[40], and
a feature set derived by Caliskan et al. [19], which is used in
the majority of recent studies [18] [41].

N-grams are derived at the lexical level and thus primarily

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

TABLE I: Dataset statistics

Author
count

Contract
count

Avg samples
per author/(std)

Avg source
code len/(std)

Avg source
code LOC/(std)

Avg byte
code len/(std)

Min
contracts/
author

Selected4contracts 1071 8915 8.32 / (12.19) 114767.76 / (196095.32) 3330.93 / (5694.51) 185421.86 / (287453.45) 4

represent layout characteristics of code. While the Caliskan et
al. [19] feature set includes lexical features (e.g., indentation,
white space use, braces placements, statistical distribution of
variable lengths and capitalization), and syntactic features that
outline the external structural organization of the code and
include features which are derived from an AST, e.g., code
length, nesting levels, and branching.

To obtain n-gram features we tokenize both source code
files and opcode files (extracted from bytecodes) using space,
carriage return, new line, and tab. The Caliskan et al. feature
set was originally developed for C and C++ programs; we thus
map these features to the corresponding Solidity features.

D. Classification

The Random Forest algorithm has recently been gaining
popularity in code authorship attribution [19]. The algorithm,
which is an ensemble of decision trees, performs well in the
scenarios where the goal is to identify the most likely author
of a code fragment. Further, once trained, it provides the
best trade-off between accuracy and processing time, hence
outperforming other models, including neural networks.

IV. Da t a

Since anonymity is the main feature of all blockchain
technologies, there are no datasets available for research
that identifies users and their corresponding transactions or
contracts (in the case of Ethereum). As a result there is
no ’’ground truth” data for our experimentation purposes.
To ensure a comprehensive evaluation of the feasibility of
the proposed approach, we constructed a validation dataset
with known relations between users (as represented by their
account address) and contracts. Generally, it is possible for
an individual user to generate multiple transactions under
different keys. In this work we adopt a conservative approach
and only collect users with multiple contracts issued under the
same key. For our analysis, we collected 21,825 verified con-
tracts by crawling e th e rs c a n . io , which we made publicly
available1. We employed a web crawler to scan the verified
contracts’ HTML and retrieved their source code with the
retained layout and lexical features, which are critical for the
source code authorship attribution. For each of the retrieved
contracts, we also extracted the corresponding bytecode and
disassembled it to obtain its opcodes.

Our dataset contained a large number of authors with
a single contract. Since having such a limited number of
contracts limits the possibility of validating attribution results,
we filter out authors that have fewer than 4 contracts. Table I
shows the statistics of our resulting dataset.

1 https://github.com/shomzy/Lino1910

0 10000 20000 30000 40000 50000
Top Features Count

^Random forest selector (bytecode)Mutual information selector (bytecode)
— Random forest selector (Caliskan)Mutual information selector (Caliskan)
— Random forest selector (source code)Mutual information selector (source code)

Fig. 2: Feature selectors comparisons

V. Ev a l u a t i o n

We implement the proposed attribution approach using
Python’s scikit-learn module [42]. We use a Random Forest
classifier with a 4-fold stratified cross validation strategy.

The objectives of our experimental evaluation are:
1) understand the effectiveness of attribution features for

Ethereum contracts’ attribution.
2) Explore the ability of our approach to accurately at-

tribute contacts to known authors.

A. Data refinement

Table II shows the effects of the refinement heuristics on
our dataset. One noticeable difference between each heuristic
is the amount of retained data. Heuristics in which similarities
are considered only between authors find less common code
between contracts and as a result retain more splits. On the
other hand, heuristics in which similarities are considered
within authors find more common code between contracts. A
possible explanation is that authors are more likely to reuse
their own code, e.g., to write and deploy different versions of
the same contract, or to reuse their own components.

The least amount of code is retained with heuristic 1. This
is the most conservative approach that removes all similarities
between, as well as within authors and as a result maintains
the least number of authors. Note that for our analysis we
choose to retain authors that have at least 4 contracts after
applying the heuristic.

On the other extreme, heuristic 8 provides the highest data
retention. In this approach, only similarities between authors
are removed. Each of the remaining splits is being treated as
a ’ full contract” , which results in retaining more authors with
at least 4 contracts. This heuristic can be used in cases where
obtaining sufficient data is not feasible. Yet, even with this

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

TABLE II: Heuristics refinement details

Heuristic Program
type

Feature
type

Retained
data %

Author
count

Avg samples
per author/(std)

Source code
avg size/(std)

Source code
avg LOC/(std)

Top/total
features

Bytecode Unigram 0.50% 34 6 / (2.48) 94371 / (80672.32) 1500 / 11590
i Source code Unigram 0.50% 34 6 / (2.48) 45162.41 / (53276.11) 1208 / (1345.128) 647 / 21550

Source code Caliskan 0.50% 34 6 / (2.48) 45162.41 / (53276.11) 1208 / (1345.128) 700 / 34987
2 Source code splits Unigram 1% 76 6.88 / (3.433) 22917.43 / (26892.87) 663.67 / (761.45) 1000 / 29623

3 Bytecode Unigram 3.50% 283 6.24 / (3.723) 149305.82/(127928.95) 6000 / 42768
Source code Unigram 3.50% 283 6.24 / (3.723) 41467.36 / (39868.53) 1186 / (1070.32) 5000 / 135563

4 Source code splits Unigram 9% 475 9.65 /(7.893) 33281.7 / (34426.26) 958.05 / (929.51) 6000 / 175427
Bytecode Unigram 1.80% 106 8.39 / (9.173) 144171.77 / (195275.03) 3000 / 21422

5 Source code Unigram 1.80% 106 8.39 / (9.173) 76077.88 / (142905.22) 2091.55 / (3900.64) 1000 / 49030
Source code Caliskan 1.80% 106 8.39 / (9.173) 76077.88 / (142905.22) 2091.55 / (3900.64) 3000 / 91315

6 Source code splits Unigram 4.20% 136 15.48 / (23.673) 59369.63 / (127319.81) 1660.75 / (3498.86) 1600 / 52515

7 Bytecode Unigram 9.13% 599 7.66 / (7.028) 180939.86 / (212620.36) 8000 / 57508
Source code Unigram 9.13% 599 7.66 / (7.028) 66135.62/(108244.7) 1894.51 / (3138.6) 6000 / 196478

8 Source code splits Unigram 23.50% 658 17.94 / (29.373) 61984.62 / (104176.03) 1787.22 / (3040.22) 7000 / 203899

liberal approach, the resulting set contains only 658 authors
which are 61% of the original dataset.

B. Feature selection

All feature sets that we employ in our study generate large
and sparse feature vectors mostly due to their heavy use of
unigram term frequencies. In many cases, such feature vectors
lead to over-fitting. To avoid biased classification results, we
examine two feature selection methods: Mutual information
analysis and Random Forest importance-based.

Figure 2 shows that Random Forest importance-based fea-
ture selection consistently provides up to 5% higher classifi-
cation accuracy compared to mutual information analysis. We
therefore apply this method to further reduce the number of
features for our analysis.

In order to find the minimal feature set that provides
sufficient classification accuracy, we employ the following
method: we incrementally select the top K ranked features and
calculate the classification’s accuracy based on 4-fold cross
validation. The results are given in Figure 3. It is clear from
the analysis that the accuracy quickly plateaus for all feature
sets. The best trade-off between the number of features (hence
size of corresponding feature vectors) and accuracy happens
at 8000 top ranked features for opcode (bytecode) unigrams
(13% of total features), 8000 top ranked features for source
code unigrams (3% of total features), and 10000 top features
for the Caliskan feature set (2% of total features). Table III
shows the classification results, before and after applying a
feature selection, per feature set. Although the accuracy does
not change, the number of features retained for attribution
analysis is significantly smaller. We use these top ranked

TABLE III: Evaluation results before and after feature selec-
tion

Program
type

Feature
set

Total
features Accuracy

Top
ranked
features

Accuracy

Source code Unigram 231553 78.04% 8000 (3%) 79.77%
Source code Caliskan 441963 76.52% 10000 (2%) 77.87%
Bytecode Unigram 63363 64.05% 8000 (13%) 65.69%

feature ratios for our following analysis.

C. Attribution results

We perform the following per heuristic: refine the dataset
as dictated by the heuristic, extract the feature sets using the
Random Forest importance-based feature selector, and refine
the top features according to the ratios described above. Table
II provides the statistics’ details.

We next perform a 4-fold stratified cross validation on each
of the refined feature sets, using a Random Forest classifier.
Table IV shows the attribution accuracy results per heuristic.
The column ’’Accuracy after feature selection” refers to the
accuracy on the refined feature set which was extracted from
Selected4contracts (rightmost column in Table III).

In most heuristics, the removal of similar code from the
contracts results in a significantly higher attribution classi-
fication rate as compared to before applying the heuristics
(as summarized in column ’ accuracy after feature selection”).
The highest rate (93.5%) was achieved with source code
unigrams, and the second best result was obtained with the
Caliskan’s feature set (90.9%). The heuristics that produce
partial contracts provide significantly more data. However,
the type of analysis that can be performed is limited since
no corresponding partial bytecode, or ASTs (used by the
Caliskan’s feature set) can be extracted. These cases are
labelled with a dash ’-’ .

Heuristic 5 shows the highest accuracy in the overall cate-
gories (excluding source code splits). It does this at the cost of
removing all contracts that have any similarities, which results
in the removal of many authors. Heuristic 7 has the second
best performance. It removes only the similar components
of the source code and merges the remaining components.
Although it provides a slightly lower accuracy than Heuristic
5, it retains 6 times more authors.

Comparing heuristics, we see that caution should be ex-
ercised as to which similarities should be removed. The
single refinement property that distinguishes heuristics 1-4 and
heuristics 5-8 is where to search for similarities. The former
searches for similarities between, as well as within authors
while the latter searches for similarities only between authors.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

TABLE IV: Classification accuracy per heuristic
Heuristic accuracy

Program
type

Feature
set

Accuracy after
feature selection i 2 3 4 5 6 7 8

Bytecode Unigram 65.69% 57.69% 57.09% 79.98% 75.18% -
Source code Unigram 79.77% 81.79% 72.31% 93.51% 88.47% -
Source code Caliskan 77.87% 78.61% 90.91% -
Source code splits Unigram 68.78% 60.38% 90.62% 87.23%

O f n t f i O f ' n t o o f o t c o f ' n t f i O f ' n '

Top Features Count

(a) Byte code
0.9

0.8

&0.7

0.5

0.4

Top Features Count

(b) Source code

Top Features Count

(c) Caliskan

Fig. 3: Finding top ranked features using incremental steps

The preservation of similarities within the authors results in
features that more accurately capture each author’s preference
of using specific code constructs over others. Further, refining
less data results in additional and larger samples, which also
contributes to higher accuracy.

We note that, while the approach that is based on the n-gram
features provide the higher accuracy, it is also susceptible to
manipulations of coding constructs’ names. In contrast, the
approach that is based on the Caliskan features supports more
robust features such as ASTs which can be more resilient

in such cases at the cost of a slightly lower classification
accuracy.

VI. At t r i b u t i o n o f s c a m s

The results show the effectiveness of our approach for
attributing unknown smart contracts to their corresponding au-
thors. To examine our approach in the underground scammers’
community, we further explore the attribution of real-world
Ethereum scams.

Etherscamdb [20] is an open source database that keeps
track of all the current Ethereum scams. The scam information
in the site is diverse and contains scam categories like Fake
ICO, Phishing, Scamming, and Scam. We extract contracts
based on the account’s address and the contract’s address. For
a given malicious contract’s address, we extract all contracts
which were deployed by the contract’s deployer. Symmetri-
cally, for each malicious account address, we extract all of its
deployed contracts (if any) and consider them to be malicious
(see Algorithm 1).

Algorithm 1 Retrieve scammers data from EtherscamDB

Require: ScmDBaddresses = - Etherscamdb’s
malicious addresses;

Ensure: Scmauthors = (au1,au2, ...) - contract related ma-
licious authors. Each author contains SC = (scl7sc2, ...)
were sci is a contract’s address;
Scmauthors ^ {}
A
for all ai in ScmDBaddr do

if ai is account address then
A.Add(ai)

else if ai is a contract’s address then
T ^ etherscan.get_all_transactions(ai)
aaddr ^ get_contract_creator_account_address(T)
A.Add(aaddr)

end if
end for
for all ai in A do

T ^ etherscan.get_all_transactions(ai)
acontracts ^ get_contract_creation_addresses(T)
Scm authors .Add({ai i acontracts})

end for
return Scmauthors

To fetch the account address of a malicious contract’s
deployer or the contract’s addresses deployed by a malicious
account address, we use e the rscan . io . To implement

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

TABLE V: Scammers dataset

Num
of
authors

Total
num
of
contracts

Max
contracts/
author

Avg
num of
contracts/
author

Source
code avg
bytesize

Source
code avg
l o c

source
code/
opcode

22 68 20 3.09 7379.98 212.91

the algorithm, for each address that was extracted from
Etherscamdb, we use e th e r e s c a n . io ’s API2 to find all
the transactions that are related to a requested address. We
provide a malicious address and receive a transaction list.
For each transaction we examine the results field. An empty
”To” field indicates that the transaction is used to deploy a
contract whose address is provided in the ”contractAddress”
field. When ”contractAddress” is the same as the provided
malicious address, this indicates that the provided address is
a contract address. If it is different, this indicates that the
provided malicious address is an account’s address and the
”contractAddress” value is the deployed contract’s address. If
the results field is empty, an account or contract was not found
at the specified address and is ignored.

The algorithm’s result set contains all malicious related
authors with their deployed contracts’ addresses. For each
of the contract’s addresses, we extract its opcode and source
code (if available in e th e r s c a n . i o ’s verified contracts).
The resulting scammers dataset are shown in Table V.

We cross referenced the scammers data and our
Selected4contracts, presumably, benign dataset. One account’s
address (0x0042bd345e43bd151fa563c2bc8fa22bda507104)
was contained in both datasets. It contained 8 verified
contracts in our collected scammers dataset of which, 5
contracts were found in our Selected4contracts’ benign
dataset. The 5 shared contracts as well as the 3 unseen
contracts were attributed correctly in the source code and
bytecode datasets.

VII. Co n c l u s i o n s

Blockchains provide pseudo-anonymity for users by provid-
ing public addresses which can not be easily linked back to
the users. In this work, we propose to leverage a stylometry
approach to explore the extent to which a deployed smart
contract’s source code can contribute to the affiliation of ac-
count addresses. To address this, we prepare a dataset of real-
world contract data; design and implement feature selection,
extraction techniques, data refinement heuristics; and examine
their effect on attribution accuracy. We further use these
techniques to test the classification of real-world scammers
data. Our experimental results show that it is feasible to
attribute Ethereum contracts to their corresponding deployers.
We were able to achieve 93.5% accuracy in attributing source
codes, using 3% of the total features, and 80% in attributing
bytecodes using 13% of the total features. In addition, we
apply one of our best performing heuristics to real world

2api.etherscan.io/api?module=account&action=txlist&address= (address)

scammers data and successfully attribute all of the contracts
associated with a specific account address.

Re f e r e n c e s

[1] Blockchain applications for the modern nation. [Online]. Available:
https://cryptodaily.co.uk/2018/03/blockchain-applications/

[2] How ibm blockchain can improve government services and ensure trust.
[Online]. Available: https://www.ibm.com/downloads/cas/2VNRQX9V

[3] Blockchain has grabbed the attention of investors. [Online].
Available: https://www.cnbc.com/2018/04/02/blockchain-has-grabbed-
the-attention-of-investors.html

[4] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamana,
“Blockchain and smart contracts for insurance: Is the technology mature
enough?” Future Internet, vol. 10, no. 2, p. 20, 2018.

[5] Three near-term applications for
blockchain technology. [Online]. Available:
https://www.forbes.com/sites/forbesfinancecouncil/2018/03/28/three-
near-term-applications-for-blockchain-technology/2/#6c9f49c6310d

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[7] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.
[8] coinmarketcap. coinmarketcap. [Online]. Available:

https://coinmarketcap.com/
[9] M. Conti, S. Kumar, C. Lal, and S. Ruj, “A survey on security and

privacy issues of bitcoin,” IEEE CST, 2018.
[10] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security

of blockchain systems,” FGCS, 2017.
[11] etherscan.io. [Online]. Available: https://etherscan.io/
[12] M. Santamaria Ortega, “The bitcoin transaction graph anonymity,” 2013.
[13] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity in

bitcoin using p2p network traffic,” in ADCS. Springer, 2014, pp. 469-
485.

[14] J. DuPont and A. C. Squicciarini, “Toward de-anonymizing bitcoin by
mapping users location,” in CODASPY. ACM, 2015, pp. 139-141.

[15] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin
transaction graph,” in ADCS. Springer, 2013, pp. 6-24.

[16] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” in IMC. ACM, 2013, pp. 127-140.

[17] W. Chan and A. Olmsted, “Ethereum transaction graph analysis,” in 12th
ICITST. IEEE, 2017, pp. 498-500.

[18] E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt, “Poster: Git
blame who?: Stylistic authorship attribution of small, incomplete source
code fragments,” in IEEE/ACM 40th ICSE-Companion, 2018, pp. 356-
357.

[19] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th USENIX, 2015, pp. 255-270.

[20] Etherscamdb. [Online]. Available: https://etherscamdb.info/
[21] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin

system,” in Security and privacy in social networks. Springer, 2013,
pp. 197-223.

[22] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelli-
gence from the bitcoin network,” in ADCS. Springer, 2014, pp. 457-
468.

[23] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen,
“Automated labeling of unknown contracts in ethereum,” in 26th ICCCN.
IEEE, 2017, pp. 1-6.

[24] D. Kaminsky, “Black ops of tcp/ip,” Black Hat USA, p. 44, 2011.
[25] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of

clients in bitcoin p2p network,” in SIGSAC CCS. ACM, 2014, pp.
15-29.

[26] R. Klusman and T. Dijkhuizen, “Deanonymisation in ethereum using
existing methods for bitcoin,” 2018.

[27] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Source
code author identification based on n-gram author profiles,” AIAI, pp.
508-515, 2006.

[28] G. Frantzeskou, S. MacDonell, E. Stamatatos, and S. Gritzalis, “Exam-
ining the significance of high-level programming features in source code
author classification,” Journal of Systems and Software, vol. 81, no. 3,
pp. 447-460, 2008.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

15th International Conference on Network and Service Management (CNSM 2019)

[29] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Effective
identification of source code authors using byte-level information,” in
ICSE. ACM, 2006, pp. 893-896.

[30] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, and B. S.
Howald, “Identifying authorship by byte-level n-grams: The source code
author profile (scap) method,” IJDE, vol. 6, no. 1, pp. 1-18, 2007.

[31] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina,
“Code authorship attribution: Methods and challenges,” CSUR, vol. 52,
no. 1, p. 3, 2019.

[32] Porosity. [Online]. Available: https://github.com/comaeio/porosity
[33] Radare2. [Online]. Available: https://github.com/radare/radare2
[34] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, “Comparing techniques

for authorship attribution of source code,” spe, vol. 44, no. 1, pp. 1-32,
2014.

[35] N. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this code?
identifying the authors of program binaries,” in ESORICS. Springer,
2011, pp. 172-189.

[36] Solidity library calls. [Online]. Available:
https://solidity.readthedocs.io/en/develop/contracts.html#libraries

[37] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis, “A probabilistic
approach to source code authorship identification,” in ICIT. IEEE, Apr.
2007, pp. 243-248.

[38] M. F. Tennyson and F. J. Mitropoulos, “Choosing a profile length in the
scap method of source code authorship attribution,” in SoutheastCon.
IEEE, Mar. 2014, pp. 1-6.

[39] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis, “On the use
of discretized source code metrics for author identification,” in SSBSE.
IEEE, May 2009, pp. 69-78.

[40] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, Source
code author identification based on N-gram author profiles, ser. IFIP.
Springer, Jun. 2006, vol. 204.

[41] L. Simko, L. Zettlemoyer, and T. Kohno, “Recognizing and Imitating
Programmer Style: Adversaries in Program Authorship Attribution,”
PoPETs, no. 1, pp. 127 - 144, 2018.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:01:58 UTC from IEEE Xplore. Restrictions apply.

