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Abstract—Android has become one of the most popular mo-
bile device operating systems. Indeed, its security issues have
attracted a lot of attention. One of the major security concerns is
the use of obfuscation strategies to evade anti-malware solutions.
Android malware authors are increasingly using code obfuscation
tools and techniques to hide malicious code. In this work, we in-
troduce a novel fingerprinting approach for Android obfuscation
tools based on spatial analysis. We investigate first-order and
second-order statistical features to analyze spatial distribution of
pixels representing Android binary images. With our approach,
we are able to achieve nearly 90% accuracy in fingerprinting
several obfuscation tools with specific configuration options.

I. INTRODUCTION

Smartphones have become a pervasive part of everyday life.
By 2017, Android had taken up nearly 80% of the world-wide
smartphone operating system market share. The appearance of
Android platform and its popularity has resulted in a sharp rise
in the number of reported vulnerabilities and consequently in
the number of threats. Being an attractive target for attack-
ers, Android mobile malware variants increased by 40% as
compared to 29% growth in previous year [1]. SophosLabs
detected nearly 10 million suspicious Android apps by the
end of 2017. More than half were either malware or unwanted
applications including adware [2].

Traditional approaches predominantly based on recognition
of well-documented threats (signatures), are struggling to cope
with this rate of growth in malware numbers each year.
Consequently, the majority of malware strains (many of which
are short lived, i.e., less than 24 hours) go undetected. In
spite of these unprecedented malware numbers, the majority of
malware samples are variants of known malware. Leveraging
the lack of security testing in Android app markets, attackers
commonly employ a suite of widely available tools to facilitate
the malware app development. To make detection of these
variants more challenging and hide the presence of malicious
content, the attackers commonly use code obfuscation[1]. The
initial goal of obfuscation is to transform original code to dis-
guise its appearance and intent, and to protect it from reverse
engineering and analysis. As a result, obfuscation is commonly
used for legitimate purposes, i.e., software protection. In fact,
the use of ProGuard obfuscator is encouraged in Android app

development. Therefore, the presence of obfuscation alone
does not indicate malicious nature of an app. However, certain
types of obfuscation are commonly associated with malicious
use; therefore, understanding whether an obfuscation is being
used and what kind of obfuscation is applied is beneficial in
facilitating malware triage and analysis.

Typically, in the course of manual analysis, reverse en-
gineers see patterns that can be attributed to a presence of
obfuscation (and sometimes even specific tools). Learning
what represents a meaningful pattern though requires years
of experience. This raises two questions. First: Is it possi-
ble to identify these patterns automatically? Although many
development tools and obfuscators tend to leave traces in
the program structure [3], recognizing these traces typically
requires tedious manual analysis of binaries. Automating this
process will significantly speed up malware triage, allowing
to recognize potentially malicious and most likely legitimate
applications. Second: Do these traces have discriminatory
power? To be effective, these patterns have to remain stable
among all binaries treated with the same tool, while varying
between the programs obfuscated with different tools. Several
studies have previously noted that various development tools
involved in production of malware tend to leave unique
traces [4], [3], [5]. These traces are often visible through
analysis of structural similarities of malware binaries.

Following this insight, we turn our attention to spatial anal-
ysis and propose a novel fingerprinting approach for Android
obfuscation tools. Spatial analysis is widely applied in many
fields for exploratory analysis. It utilizes statistical techniques
to reveal non-obvious patterns analysing spatial relationships
of features. Specifically, we analyse spatial properties of the
images generated from Android binary files to derive patterns
that can uniquely represent various obfuscation tools. We
survey first-order and second-order statistical features based
on the spatial distribution of pixel values to analyze the image
texture for potential structural patterns. We refer to quantitative
representation of these patterns as fingerprints. We validate
our approach on a dataset generated from seven Android
obfuscation tools with various configuration options. With our
approach, we are able to achieve nearly 90% accuracy in
fingerprinting several obfuscation tools with specific config-
uration options.
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The organization of this paper is as follows: Section 2
highlights related work; Section 3 provides a short background
on obfuscation tools used; Section 4 presents the proposed
approach; Section 5 discusses results obtained during experi-
mental study; and Section 6 concludes this paper.

II. RELATED WORK

Up until now, the research on Android apps’ obfuscation
mainly focused on (1) detection of obfuscated apps; (2)
evaluation of efficacy of obfuscation to mask the malicious-
ness against anti-virus detection; (3) identification of different
obfuscators used in apps.

Zhang et al., proposed a system named ViewDroid to detect
repackaged Android apps based on the analysis of software
birthmark, a set of unique characteristics that an app possesses
which can be used to identify the app [6]. Wang et al.
asserted that even if obfuscation is performed, there are still
some important elements that cannot be changed; otherwise
the correct execution of the app cannot be guaranteed [7].
Consequently, the authors believed that, for most obfuscators,
the app code structure cannot be changed. Based on these
assumptions, they analysed statistical characteristics of the
app code to perform Android malware detection. Although no
direct discussion is included in the work of Kumar et al. [8],
the detection of obfuscation in Java malware through analysis
of metrics such as word count, identifier length, etc. can be
potentially extended to Android binaries.

In the study performed by Rastogi et al., a system named
DroidChameleon focused on evaluation of resistance of com-
mercial Android anti-malware softwares against various ob-
fuscation techniques [9]. Similar research was performed by
Mercaldo and Visaggio [10]. A framework was developed to
apply obfuscation on known malware smali code to investigate
the rate of detection in a presence of obfuscation. The research
on identification of various obfuscation is scarce. Wang and
Rountev investigated potential for recognition of obfuscation
techniques by extracting featured strings out of the data section
in the .dex file [11].

Spatial analysis has been extensively studied and widely
applied in many fields for exploratory analysis. In the mobile
domain, in general and the malware analysis area, specifically,
spatial exploration has seen very limited use and is typically
employed through visualization of binaries. Those few studies
that were published in this area focus on one of three objec-
tives: individual analysis of malware samples to gain new in-
sights of their behavior [12], [13]; a broader malware detection
that includes bulk visualization for samples’ comparison and
classification [14]; and malware systematization to understand
similarities and common behavior [15], [16].

DAVAST, a data-centric system level visualization utility,
proposed by Wüchner et al. [12] focused on individual mal-
ware analysis by using system data flow graph. The system
can visualize system activities as data flow graphs with nodes
presenting operating system entities such as processes, files,
and sockets; edges denoting data flows between the nodes. Pat-
tern matching of the graphs can tell the difference between the

benign and malicious behavior. In [13], a tree-based navigation
visual interactive Hex editor is used. This mechanism helps a
user to pinpoint the underlying structure of binary file quickly
to enhance the efficiency of individual malware analysis and
detection.

The majority of work in the field falls into second category:
Malware Comparison. This category can be further divided
into feature-based and image-based approaches. Shabtai et
al. [14] presented a network behavior-based anomaly detection
system for identification of malicious attacks, masquerading
applications, and injection of malicious code in the repackaged
apps. This system has been tested on a broad range of apps and
their different versions. Gove et al. [17] developed a scalable
visualization tool named SEEM for simultaneously comparing
a large corpus of malware across multiple sets of attributes, so
that the shared or reused attributes can be detected to reduce
analysts’ workload.

Our visual exploration approach, although it also aims to
identify anomalies and patterns, focuses primarily on internal
binary structure to identify obfuscation presence and thus
falls under the second sub-category: feature-based malware
comparison. In the particular direction, the work done by
Nataraj and his group is a good example [4]. The authors
focused on several operating systems including Android and
explored gray-scale images generated from binaries but also
the signals as well. The experimental results show that, in
terms of classification accuracy, their result is comparable to
dynamic analysis while their efficiency is 4,000 times faster
than dynamic analysis.

Similar work was done by Liu and Wang [18]. In this
work, the authors focused on large scale Windows malware
analysis using a selective ensemble learning method based on
bagging and K-means. They compared the gray-scale image
based method to the n-gram and API call feature extraction
method. The result shows that the image-based method has an
overall advantage over the other two no matter what classifier
is used.

In the work of Ahmadi et al. [19], the image analysis
method is further divided into types. The first type uses
features that describe the textures in an image such as the
Haralick features [20], and the second type uses the Local
Binary Patterns features. They also discussed other 12 feature
extraction mechanisms. Their results show that, in terms of
the importance of the features, the metadata about the size of
the file, and the address of the first bytes sequence is the most
efficient one and the first type of the image analysis method
is ranked as the sixth in the 14 mechanisms.

Study of similarity between the apps is an interesting
topic in this domain and falls in the third category: Malware
Similarity. However, using visualization in this direction is
rare. In the work of Han et al. [15], image matrices are
generated, using the opcode sequences from malware samples;
then the similarities are evaluated based on the RGB-colored
pixels in the image matrices. In the study of Paturi et al. [16]
a method named NCD (Normalized Compression Distance)
is employed to enumerate code similarity between malicious
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Android apps and visualize their clusters.

III. OBFUSCATION

Code obfuscation of mobile programs is gaining popularity.
It is especially common on the Android platform, which
employs the Java programming language. Since Java bytecode
executes in the hardware independent Java virtual machine, it
retains most of the information of the original source code.
As a result it is easy to decompile and reverse engineer.
To prevent reverse engineering, Android apps are typically
protected through encryption or code transformation known
as obfuscation.

Collberg et. al. [21], defined four types of code obfuscation:
layout obfuscation that targets surface characteristics and
includes methods such as source code formatting, variable
renaming; data obfuscation that targets data structures and
includes array/methods reordering/splitting, change of variable
encoding; control obfuscation, a more advanced transforma-
tion that aim to obscure the flow of the program control (e.g.,
redundant or junk code insertion, loops, statements reorder-
ing, code optimization); and preventative transformations that
focus on decompilers’ weaknesses.

In practice Android code obfuscation is typically automated
through the use of obfuscation tools that mostly apply layout
obfuscation. In this work we focus on several popular ob-
fuscators that are widely applied in practice: ProGuard1, the
most well known of all the Android obfuscators, is a free Java
class file obfuscator that detects and removes unused classes,
fields, methods, and attributes and also optimizes bytecode
and removes unused instructions. ProGuard is integrated into
the Android build framework. ProGuard also includes code
shrinking (e.g., removal of unused classes, fields) and code
optimization, a procedure that applies transformations similar
to compiler optimization. DexGuard2 is the extended com-
mercial version of ProGuard which focuses on code protec-
tion, with additional features like string and class encryption,
obfuscation of the class and method names with non-ASCII
characters. DexGuard-obfuscated samples were reportedly dif-
ficult to reverse engineer. APK Protect3 is another advanced
off-the-shelf obfuscation and protection service specific to
Android executable files. Bangcle (in Chinese) or SecNeo
(in English)4 uses an online service to restructure the APK
decrypting the app at runtime, obfuscating native libraries, and
using libraries with stack protection enabled. Klassmaster5

is advanced Java obfuscator that in addition to traditional
layout obfuscation includes obfuscation of exception han-
dling procedures. JShrink6 is free Java code obfuscator that
primarily offers layout and control obfuscation. Allatori7 is
a commercial Java obfuscator that includes a full range of
obfuscation transformations.

1https://www.guardsquare.com/en/proguard
2https://www.guardsquare.com/en/dexguard
3https://sourceforge.net/projects/apkprotect/
4http://www.secneo.com/
5http://www.zelix.com/klassmaster/
6http://www.e-t.com/jshrink.html
7https://www.yworks.com/products/yguard

Fig. 1. The flow of fingerprinting process

IV. FINGERPRINTING OBFUSCATION TOOLS

Our approach to determining unique patterns of obfuscation
tools follows four main steps: preprocessing, image generation,
feature extraction, and classification (Figure 1).
Given an Android apk file, the Preprocessing step ensures that
the apk is valid for analysis, unpacks and extracts necessary
executable .dex files.
The second step, Image generation produces a gray-scale
image for each binary. The original .dex file is broken into
8-bit vectors and each vector is transformed into a decimal
value which is then used to determine the gray-scale value of
a pixel.
For each image, the Feature extraction step calculates first-
and second-order statistical features. The first-order statistical
features (Shannon entropy, Arithmetic mean, Chi square and
Hamming weight) are extracted directly from image and thus
show structural properties of .dex file. The second-order statis-
tical features (Haralick Vector) give deeper textural analysis of
the image, allowing the capture of small changes in adjacent
bytes.
The last step Classification classifies images based on gen-
erated features and produces the most likely obfuscator em-
ployed in a given Android app.

(a) (b)

Fig. 2. Image generation approach: (a) Gray-scale malware image [22] , (b)
Color malware image [3]

A. Generating Images

In this work we focus on analysis of spatial distribution of
values derived from a binary file. To model the existing spatial
variations, we employ image texture analysis. In malware
binary analysis, two approaches were introduced to produce
effective images representing binary structural information.
Nataraj et al. [22] developed an approach for gray-scale binary
images (Figure 2a). Each binary is treated as an 8-bit vector of
integers organized in a 2D array, which is then mapped into
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an image depending on byte’s values (0 for black and 255
for white). A slightly different approach that maps each byte
into corresponding color based on the nature/type of byte was
considered by Jain et al.[3] (Figure 2b).

The comparative visual representation of both approaches
on the example of “a2dp” Android app is given in Figure 3.
The main difference between these two images is the height.
In spite of the fact that the original file size is the same (514
KB), the resulting height of the color image is larger. The
reason lies in the way the images are generated. The color
image is generated based on the internal structure of the .dex
file. First, the information contained in the header file is read
out so that the remaining part can be determined by using
the address pointers and offsets. Then for different contents,
different colors are allocated.

Unlike the gray-scale image, the color image incorporates
information that does not carry any functional value, such as
debugging information and padding. It is well-known that a
code compiled in the debug format usually has bigger size than
that of release format due to the extra debugging information.
And padding bytes are commonly used in a .dex file to
create the required alignment. Aside these differences both
representations contain the same information. In our experi-
ments we performed preliminary analysis for both types of the
images. Since these experiments produced similar results, we
employed a slightly simpler gray-scale method for the image
generation.

(a) (b)

Fig. 3. Two types of original images for “a2dp” app: (a) Original gray tone
image, (b) Original color image

B. Features

Once the images are generated, we proceed to image texture
analysis. Since an image is a numerical representation of byte
values, image texture represents the spatial organization of
the gray levels of the pixels in a binary. Although many
numeric texture analysis approaches were introduced in the
past research, statistical method is seen as the most powerful
image analysis method [23], [24].

We therefore focus on this method and extract the statistical
features that describe the binary image texture. Usually, the
statistics are performed on the gray-scale level of each pixel
contained in the image.

We leverage first-order and second-order statistical analysis
at this stage. First-order statistics are simple to calculate and
effective in revealing straightforward differences in images.

We calculate Shannon entropy, Arithmetic mean, Chi square,
and Hamming weight. These first-order statistics give us a
coarse view of potential nuances in the images.

The deeper insight into relationships between individual
pixels can be derived through second-order statistics that
look at correlations between pixels. A well known approach
to statistical analysis of image texture is the gray-level co-
occurrence matrix (GLCM) introduced by Haralick et al. in
1973 [25]. GLCM characterizes image by analysing frequency
of neighbouring pixels in a specific spatial relationship. For
second-order statistical analysis, we employ so-called Haralick
features that represent texture features of GLCM.

The statistical features we utilized in this work are defined
as follows:

Shannon entropy (H): an established technique for mea-
suring uncertainty which is calculated as follows:

H(X) = −
n=1∑
i=0

p(Xi) log10 p(Xi) (1)

where X is a random variable ranging from 0 to 255 to
denote gray level of the pixels. p(Xi) is the probability mass
function. Usually, compressed or encrypted files have higher
entropy than those that have repeating values, for the former
have higher randomness than the latter.

Arithmetic mean: the sum of byte values in a given
fragment divided by the fragment size.

X̄ =
1

N

N∑
i=1

xi (2)

Chi square (X2): an effective means of measuring random-
ness and which is sensitive to difference in random, pseudo
random, and compressed data. Its mathematical definition is

X2 =

n=1∑
i=0

(observed− expected)2

expected
. (3)

In this formula, ‘observed’ means the observed distribution
of byte values while ‘expected’ is only a uniform random
distribution value used here. So it can tell us to what extent a
random variable deviates from a uniform random distribution.

Hamming weight: a count of non-zero symbols in a given
alphabet. In our experiment, the alphabet contains only binary
values. Therefore, the Hamming weight is the fraction of the
total number of bits equal to 1 divided by the total number of
bits.

N−1∑
x=0

M−1∑
y=0

(1− δ(X(x, y), 0)). (4)

Haralick vector: Let i and j be gray-scale values, the entry
of co-occurrence matrix is the occurrences (frequencies) of i
and j separated by vector distance ~d, which can be further
expressed in terms of absolute distant d and the direction
defined by the angle θ [25]. In this work, we set d = 1; and θ
can be 0o, 45o, 90o and 135o. In other words, the neighbouring
pixels are analyzed at various rotation angles (e.g. 0, 45, 90,
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and 135 degrees) as depicted in the Figure 4. By dividing
total number of neighbouring pixels R(d, θ), the co-occurrence
matrix is converted into point probability matrix whose entry
is denoted by p~d(i, j), the normalized probability, which is the
base of other statistics.

Fig. 4. The four directions of adjacency for calculating the co-occurrence
matrix, where ”X” is the pixel under investigation, with eight nearest-neighbor
pixels labeled in the framework to describe pixel connectivity [23]

We derive all 13 Haralick features and use them as a
vector, which we refer to as a Haralick Vector. Mathematical
definition and its components are listed in the Table I. Since
the Haralick vector can be calculated along four directions, the
final analysis is performed on 4×13 = 52 Haralick features. In
the rest of this work, any feature from the 0◦ is labelled by H
since it is the horizontal direction; V (vertical) stands for 90◦;
D (diagonal) marks 45◦ direction; SD (secondary-diagonal) is
for 135◦. According to this convention, the label “H13” can
be explained as the 13th component of the Haralick vector
calculated in the 0◦ (horizontal) direction.

TABLE I
COMPONENTS OF HARALICK VECTOR

Name Formula

Angular Second Moment
(energy, Uniformity)

f1 =
∑Ng
i=1

∑Ng
j=1 pij

2

Contrast (Inertia) f2 =
∑Ng−1

n=0 n2 ∑Ng
i=1

∑Ng
j=1 pij with |i−

j| = n

Correlation f3 =
∑
i
∑
j(ij)p(i,j)−µxµy

σxσy

Sum of Squares: Vari-
ance

f4 =
∑
i

∑
j(i− µ)

2p(i, j)

Inverse Difference Mo-
ment (Homogeneity)

f5 =
∑
i

∑
j

1
1+(i−j)2

p(i, j)

Sum Average f6 =
∑2Ng
i=2 ipx+y(i)

Sum Variance f7 =
∑2Ng
i=2 (i− f8)2px+y(i)

Sum Entropy f8 = −
∑2Ng
i=2 px+y log[px+y(i)]

Entropy f9 = −
∑
i

∑
j p(i, j) log(p(i, j))

Difference Entropy f10 = −
∑Ng−1

i=0 px−y(i) log(px−y(i))
Difference Variance f11 = variance of px−y
Information Measure of
Correlation 1

f12 = HXY−HXY 1
maxHX,HY

Information Measure of
Correlation 2

f13 = (1−exp[−2.0(HXY 2−HXY )])1/2

V. EXPERIMENTAL STUDY

The goal of the experimental study is to validate the
proposed approach and to test effectiveness of features in
classifying the obfuscators. The classifiers are evaluated with
a 10-fold cross-validation.

TABLE II
DESCRIPTION OF DATASET

Name Obfuscation Options Total Number Used in Classification
Allatori Default

Layout
Data
Control

325 298
305
305
305

Klassmaster Default
Layout
Data
Control

325 298
305
305
305

DexGuard Default
Layout
Data
Control

325 298
305
298
298

Jshrink Default (Layout) 325 325
ProGuard Default (Layout) 325 325

Bangcle 50 0
Non-obfuscated 325 284

Total Number Used in Classification: 4559

A. Dataset

The dataset comprises both obfuscated and non-obfuscated
Android apps. A total of 1399 unique, as defined by MD5
hash, Android app’s source code is collected from F-droid8

market. The source code is compiled by Ant with Ivy9. Then
the obfuscation is applied in two ways depending on the
obfuscator tool being used. Some obfuscation tools are used
during compilation time by including corresponding .jar file,
such as Allatori and DexGuard. Here the obfuscation is done
automatically by executing C-shell scripts. Some Windows-
based GUI obfuscation tools can be directly used on the
.apk files after compilation step e.g., Bangcle. In this case,
obfuscation is done manually.

Out of 1399 collected apps many could not be obfuscated
due to various reasons such as version collision, failure to
download important external files, etc. We successfully com-
piled 325 apps and obfuscated each of them by 5 different
obfuscators: Allatori, DexGuard, Jshrink, Klassmaster, and
ProGuard. For each of the obfuscators, we experimented
with 4 different obfuscation types: Default, Layout, Data,
and Control. We were not able to successfully obfuscate all
325 apps with each obfuscation type due to various reasons
including incompatible version of the Android plugin, SDK
version collision, improper environment parameters set in the
configuration files, etc., resulting in 305 or 298 apps in some
cases.

For classification, we used obfuscators with all the different
obfuscation options to find the most efficient app-independent
features. The default configuration for Allatori, DexGuard, and
Klassmaster includes layout obfuscation, data obfuscation, and
control obfuscation. Whereas, Jshrink and ProGuard by default
only apply layout obfuscation. We also manually generated
50 samples of Bangcle that are only used in testing first-
order statistics. Information about this dataset is presented in
Table II.

B. Evaluation of Extracted Features

8https://f-droid.org/
9http://ant.apache.org/
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Fig. 5. Gray-scale image and its corresponding value of Shannon entropy

1) First-order Statistical Features: The first test is to check
if the first-order statistics can describe the internal structure
of the images, for we want to know if the obfuscation can be
reflected by certain image structures directly.

We tested the first-order statistics in two ways. The first
way is to divide an image horizontally into small segments so
that the image can be scanned to disclose valuable details by
using the first-order statistics. The motivation for this method
is from the observation of the images. We generated a large
number of gray-scale images under different circumstances
and found a common image structure with horizontal stripes
varying in location and contrast. Consequently, to check the
efficacy of the first-order statistics, we sliced the images along
the horizontal stripes and extracted numerical feature values.
It turned out to be an efficient analyzing method to disclose
the internal structures of those images.

As an example, the image obtained from the app “dendroid”
is presented in Fig. 5. All the four first-order statistics are
calculated on those segments. The results are plotted in a
graph where the x-axis stands for percentage of the image’s
height and the y-axis is the statistical value obtained. Fig.
5 depicts how the internal structure of a gray image can
be disclosed by the first-order statistical features. For the
convenience of comparison, the gray-scale image has been
rotated 90o counter-clockwise. Since all the four statistics
lead to equivalent results, only Shannon entropy is shown for
brevity.

The experiments similar to the one described by Fig. 5 have
been performed repeatedly on a group of randomly selected
apps to confirm that the internal structure can be reflected
by the first-order statistics effectively. However, this is not
the goal we are content with. We want to find if there is a
stable relation between the image internal structure and the
obfuscator’s behavior. Further experiments show that the first-
order statistics can easily reveal the usage of Bangcle. No
matter what app has been obfuscated by Bangcle, the graph
always shows the same profile. For some other obfuscators
such as ProGuard, it is more challenging to capture a stable
profile from the curves (Fig 6). In this figure, two apps
named “am.ed.exportcontacts” and “se.johanhil.clipboard” are

Fig. 6. Shannon entropy is calculated on different apps.(a) For
“am.ed.exportcontacts”, Bangcle (Left), ProGuard (Right) (b) For
“se.johanhil.clipboard”, Bangcle (Left), ProGuard (Right)

obfuscated by Bangcle and ProGuard. It is clear that the effect
of ProGuard varies from one app to another, which is in
contrast to that of Bangcle. The reason is, as a packer, Bangcle
always relocates most of the content in the .dex file to some
other resource file, leaving behind a .dex file of fixed length
with small variation in the structure.

Thus, this profile is unique to Bangcle. From the results
it is evident that the curve drawn by calculating first-order
statistical quantities not only depends on what obfuscator has
been used but also on what app has been handled, i.e., the
behavior of curves is app-dependent.

To find out app-independent features, Default dataset for
all obfuscators is utilized. Three of the first order statistics,
Chi square, mean value and Shannon Entropy, are calculated
for each sample and then plotted in a 3D graph as shown in
Fig.7. This is the second approach in which the calculation
is performed on the whole image, where 3 of the statistics
are selected as the coordinates to decide its position in a 3D
graph.

Fig. 7. 3D graph for 5 obfuscators used on the Default dataset, using 3
first-order statistical quantities as coordinates.

Figure 7 implies the possibility of using clustering method.
It shows the dots from different obfuscators have the tendency
to be clustered in different groups. However, if we compare

Authorized licensed use limited to: University of Saskatchewan. Downloaded on December 23,2021 at 21:36:29 UTC from IEEE Xplore.  Restrictions apply. 



the obfuscators in pairs, the comparison shows that some of
them are far away from each other, while some of them are
too close to be distinguished. A similar conclusion was drawn
with another combination of first-order statistics (Hamming
weight, Chi square and Shannon entropy) because mean and
Hamming weight resulted in same values. The reason for this
is that while counting bits equal to 1 for Hamming weight,
we are actually calculating a sum of 1s and diving it with the
total number of bits, and this is equivalent to the mean value.

To clarify the effectiveness of first-order statistics quanti-
tatively, classification is performed on the entire dataset – 5
obfuscators with Default, Layout, Data and Control options.
The results are summarized in Table III. In Table III, SMO

TABLE III
RESULTS OF CLASSIFICATION USING THE FIRST-ORDER STATISTICS

Algorithm /
Obfuscation:

Bagging Regression Kstar SMO

Default: 54.86% 55.31% 27.97% 41.12%
Layout: 43% 47.15% 18.78% 40.19%
Data: 52.09% 54.07% 30.62% 45.48%
Control: 50.55% 55.94% 30.50% 35.90%

and Kstar are implementations of SVM and k-NN algorithms
provided by weka [26]. However, the highest accuracy gener-
ated by Regression is still less than 56%. In the worst case, the
accuracy from k-NN is no more than 19%. This means, only
for certain obfuscators such as Bangcle, the first-order statistics
are useful; but they are not sufficient for other obfuscators like
ProGuard, Klassmaster, etc.

2) Second-order Statistical Features: As an example, a
gray-scale image generated from an app named “monakhv”
is shown in Figure 8 and the corresponding Haralick features
are listed in Table IV. Unlike the gray-scale image contained
in Figure 5, this image does not contain obvious horizontal
stripes.

Fig. 8. Gray Scale Image of “monakhv”.

It is clear from the results that the values along 45◦ and 135◦

are almost identical up to 2 decimal places. This numerical
feature shows the symmetry between the two angles, which
is also visible in Figure 8. In contrast, the values along 0◦

and 90◦ are quite different which is reflected by the vague
horizontal stripes in the image.

C. Classification

First of all, a binary classification is performed on a dataset
containing 284 non-obfuscated apps and 305 obfuscated apps
with the default option. Only default option is considered for

TABLE IV
HARALICK FEATURES OF NON-OBFUSCATED “MONAKHV”

0◦ 45◦ 90◦ 135◦

1.59472e-01 1.20405e-01 1.20380e-01 1.20239e-01
5.13845e+00 1.24506e+01 1.24553e+01 1.24919e+01
9.08526e-01 7.78173e-01 7.78099e-01 7.77438e-01
2.80871e+01 2.80638e+01 2.80651e+01 2.80639e+01
9.53298e-01 8.11906e-01 8.11913e-01 8.11495e-01
1.62506e+01 1.62493e+01 1.62496e+01 1.62493e+01
1.07210e+02 9.98048e+01 9.98054e+01 9.97638e+01
3.22172e+00 3.58547e+00 3.58623e+00 3.58744e+00
3.38706e+00 4.08070e+00 4.08066e+00 4.08186e+00
3.899647e-02 2.576184e-02 2.576488e-02 2.573827e-02
4.34044e-01 1.45525e+00 1.45525e+00 1.45745e+00
-9.02657e-01 -6.77462e-01 -6.77486e-01 -6.77085e-01
9.98097e-01 9.92326e-01 9.92327e-01 9.92308e-01

this experiment as it contains features from all different types
of obfuscation including layout, data, and control. In the non-
obfuscated dataset, some apps are generated from the source
code different from those used to generate the obfuscated apps,
since in the real world not all the samples are from the same
original code. The classification results are shown in Table V.
These results indicate that the non-obfuscated apps and the
obfuscated apps are quite distinct. The differences can be well
depicted by the selected Haralick default features so that the
smallest accuracy value of the classification is above 61%.

TABLE V
BINARY CLASSIFICATION OF OBFUSCATED AND NON-OBFUSCATED APPS

Algorithm: Bagging KSTAR SMO Regression
Accuracy: 65.53% 67.06% 61.29% 64.01%
Precision: 64.80% 64.90% 72.60% 63.60%

To further check the effectiveness of the Haralick features,
and to investigate what kind of useful information can be
determined from the dataset, classification is done. In the
experiments, all 52 Haralick features are used. For each dataset
the same feature selection experiment was performed. The
required features are selected according to their information
gain value and the overall classification accuracy. We thus
selected the top 11 for Default, top 14 for Layout, top 16
for Data, and top 23 for the Control dataset. The features
selected for each obfuscation type, ranked according to their
information gain values, are listed in Table VI.

Figure 9 presents classification results for four different
types of dataset: Default, Layout, Data, and Control. The
x-axis and y-axis denote number of features and accuracy,
respectively. With each iteration of the experiment the features
with the least information gain are taken away. The results
shows that the highest accuracy obtained with Default dataset
is 56.92%. With Layout, Data, and Control the accuracies are
51.02%, 65.52% and 60.22%, respectively. In all the cases,
accuracy is less than 66%, which is very low compared to the
similar work done on malware family classification. This is
because, compared to the tangible malware families, our pur-
pose of pursuing obfuscator’s characteristic behavior is more
abstract. The characteristic behavior cannot have observable
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TABLE VI
FEATURE GROUP SELECTED FROM THE HARALICK VECTOR

Default Layout Data Control
IG Features IG Features IG Features IG Features
0.196 D13 0.1739 V3 0.0959 H3 0.0964 SD7
0.1836 SD3 0.1585 SD3 0.0709 D3 0.0961 D7
0.1777 D3 0.1503 SD13 0.0677 SD3 0.0873 D13
0.1619 V3 0.1359 H3 0.0581 H13 0.087 SD13
0.1596 SD13 0.1181 D13 0.0544 V3 0.0817 SD3
0.154 H13 0.1098 H13 0.0523 H2 0.075 D3
0.145 H3 0.1064 D3 0.048 H4 0.0707 V13
0.1283 D12 0.1039 V12 0.0479 V7 0.0672 H12
0.1071 V10 0.0877 V13 0.0479 SD7 0.0654 H13
0.1055 V12 0.0764 V2 0.0467 V4 0.062 H7
0.1042 V13 0.0692 H2 0.0467 D4 0.0588 H4
- - 0.0682 D12 0.0467 SD4 0.0568 H2
- - 0.068 SD12 0.0466 D7 0.0564 SD4
- - 0.0669 D6 0.0458 H7 0.0564 D4
- - - - 0.0384 SD2 0.0556 V4
- - - - 0.0384 D2 0.0512 V12
- - - - - - 0.046 D12
- - - - - - 0.042 V7
- - - - - - 0.0367 V6
- - - - - - 0.0367 D6
- - - - - - 0.0367 H6
- - - - - - 0.0367 SD6
- - - - - - 0.0309 H3

independent existence without applying the obfuscators on the
apps. Therefore, it is impossible to figure out completely app-
independent features.

Fig. 9. Haralick feature selection

With the aim to improve the overall accuracy, experiments
are also performed on mixing the first and second order
features. In the mix case, all 56 features are used. Here also the
required features are selected according to their information
gain value and the overall classification accuracy. For Default
the top 13, for Layout the top 12, for Data the top 18 and
for Control the top 24 features are selected. The features
selected for each obfuscation type, ranked according to their
information gain values, are listed in Table VII. It can be seen
that some of the first-order features with higher information
gain value appear in the mix feature list.

Figure 10 presents similar classification results for four
different types of dataset with mixed features. The results
show that the highest accuracy obtained with Default dataset
is 61.27%. With Layout, Data, and Control the accuracies
are 54.49%, 66.96% and 63.43%, respectively. These results
are slightly better than when only Haralick features are used,
the reason being the selection of some first-order features
contributes to the overall accuracy. But still the accuracy
obtained is less than 68%.

1) Fingerprinting Obfuscators: The final set of experiments
were performed to point out by what group of the features

TABLE VII
FEATURE GROUP SELECTED WITH MIX FEATURES

Default Layout Data Control
IG Features IG Features IG Features IG Features
0.3155 Shannon

entropy
0.3366 Shannon

entropy
0.1445 Hamming

weight
0.0964 SD7

0.3055 Hamming
weight

0.2966 Hamming
weight

0.0959 H3 0.0961 D7

0.196 D13 0.1739 V3 0.0709 D3 0.0873 D13
0.1836 SD3 0.1585 SD3 0.0677 SD3 0.087 SD13
0.1777 D3 0.1503 SD13 0.0581 H13 0.0837 Hamming

weight
0.1619 V3 0.1359 H3 0.0544 V3 0.0817 SD3
0.1596 SD13 0.1181 D13 0.0523 H2 0.075 D3
0.154 H13 0.1132 Mean

value
0.048 H4 0.0707 V13

0.145 H3 0.1125 Chi square 0.0479 SD7 0.0672 H12
0.1402 Mean

value
0.1098 H13 0.0479 V7 0.0654 H13

0.1343 Chi square 0.1064 D3 0.0467 V4 0.062 H7
0.1283 D12 0.1039 V12 0.0467 SD4 0.0588 H4
0.1071 V10 - - 0.0467 D4 0.0568 H2
- - - - 0.0466 D7 0.0564 D4
- - - - 0.0458 H7 0.0564 SD4
- - - - 0.0444 Shannon

entropy
0.0556 V4

- - - - 0.0384 D2 0.0512 V12
- - - - 0.0384 SD2 0.046 D12
- - - - - - 0.042 V7
- - - - - - 0.0367 D6
- - - - - - 0.0367 SD6
- - - - - - 0.0367 H6
- - - - - - 0.0367 V6
- - - - - - 0.0309 H3

Fig. 10. Mix feature selection

and to what extent an obfuscator can be fingerprinted. This
experiment was performed on all datasets: Default, Layout,
Data, and Control for both Haralick features and Mix features.
In the series of classification, the starting feature group con-
tains all the selected features mentioned before in Table VI
and Table VII. Then those features are taken away one by
one according to their information gain value. The final set of
features that reaches the highest accuracy is regarded as the
fingerprint for a given obfuscator. These fingerprint features
are summarized in Table VIII to Table XI for Haralick features
and Table XII to Table XV for Mix features, respectively. The
features selected in the group are ranked according to their
decreasing information gain value.

As our results show, with Haralick features we are able to
distinguish the obfuscators using default and layout configu-
rations with at least 80% accuracy. Overall, Jshrink and Pro-
Guard have the highest accuracy and precision as compared to
other obfuscators. We can detect the presence of Jshrink with
88% accuracy in default configuration (82% ProGuard) and
89% accuracy in layout configuration (90% ProGuard). The
reason is that they both mainly apply layout obfuscation while
the default obfuscation option contains layout obfuscation plus
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shrinking and some optimization. The accuracy for data and
control dataset ranges between 68% and 84%, respectively. In
both configurations, DexGuard achieves the highest accuracy
among other obfuscators (84%).

With Mix features, as expected the overall accuracies in
fingerprinting obfuscators increased slightly. Similar to exper-
iments with Haralick features, Jshrink has the highest accuracy
of 91% with Mix features for both Default and Layout dataset.
Other obfuscators also show accuracy that ranges between
80% and 90% for these configurations. For data and control
configurations we are able to achieve over 80% for DexGuard,
although we are less accurate for other obfuscation tools
(between 66% and 71%).

TABLE VIII
FINGERPRINTING WITH HARALICK FEATURES & DEFAULT DATASET

Obfuscator Feature Group Accuracy Precision
Jshrink SD3, V3, D3, V12, H3, D12, V10, H13, D13 88.24% 83.3%

Klassmaster D13, SD13, V13, V3 80.77% 52.4%
ProGuard SD3, D13, SD13, D3, V13, H3, V3, H13, D12, V12 82.72% 64.2%
DexGuard D13, SD13, H13, SD3, D3, H3, V13, V10, V12, D12 81.81% 56%

Allatori SD13, D13, H3, V3, H13, V12, V13, SD3, D12, V10, D3 81.61% 55.8%

TABLE IX
FINGERPRINTING WITH HARALICK FEATURES & LAYOUT DATASET

Obfuscator Feature Group Accuracy Precision
Jshrink V3, SD3, V12, D3, H3, V2, H2, D12, SD12, V13, H13 88.72% 83.6%

Klassmaster D13, SD13, V3, SD3, V2, V12, D3, H3, H13, D12 80.38% 37.5%
ProGuard D13, SD13, D3, SD3, D12, V13, SD12, H13, H3, V3, V12 89.81% 82.4%
DexGuard SD13, D13, V3, SD3, V2, V12, D3, H3, H13, D12 80.45% 40%

Allatori V3, H3, V12, SD3, D3, H2 85.19% 84.8%

TABLE X
FINGERPRINTING WITH HARALICK FEATURES & DATA DATASET

Obfuscator Feature Group Accuracy Precision
Allatori V3, D3, SD7, H13 72.71% 65.4%

Klassmaster H3 68.84% 62.2%
DexGuard H3, V7, SD3, D3, V3, H13 83.87% 80.3%

TABLE XI
FINGERPRINTING WITH HARALICK FEATURES & CONTROL DATASET

Obfuscator Feature Group Accuracy Precision
Allatori SD13, D3, D4, H12, H13, H7, D7, H3, H4, H6 67.29% 53.2%

Klassmaster SD13, D3, D4, H12 65.08% 35.7%
DexGuard SD13, D7, SD7, D13, H12, SD3, D3, V13, H13, H7, H4, H2, SD4,

D4, SD6, D6, V6, H6, V4, V12, D12, V7
84.31% 80.2%

D. Validation

In this section, we validate our approach with the results
of an existing technique. Wang and Rountev [11] proposed
an approach that uses string-based features of the .dex file
to identify Android obfuscators. First, the size of our dataset
is roughly double that of their dataset (2600 vs 4559). Both
generated apps with similar obfuscators except for some
exceptions. Second, they used limited configurations options,
default and custom, to train the classifier. In the case of
ProGuard for custom options, focus was on optimization,
renaming, and repackaging, while in the case of Allatori/Dasho
they focus only on renaming and control-flow modifications.

TABLE XII
FINGERPRINTING WITH MIX FEATURES & DEFAULT DATASET

Obfuscator Feature Group Accuracy Precision
Jshrink Shannon entropy, SD3, V3, D3, H3, Hamming weight, D12, V10, H13,

D13, SD13, Chi square
90.90% 84.6%

Klassmaster Hamming weight, Shannon entropy, Mean value, D13, SD13,
Chi square, V3, V10, SD3, D3, H13

81.29% 54.4%

ProGuard Hamming weight, Shannon entropy, SD3, D13, SD13, D3, H3, V3, H13,
Chi square, Mean value

84.73% 69.4%

DexGuard Hamming weight, D13, SD13, H13, SD3, D3, H3, Mean value,
Chi square, Shannon entropy, V10

86.22% 70.9%

Allatori Shannon entropy, SD13 80.44% 25%

TABLE XIII
FINGERPRINTING WITH MIX FEATURES & LAYOUT DATASET

Obfuscator Feature Group Accuracy Precision
Jshrink Shannon entropy, V3, SD3, V12, D3, H3, Hamming weight, Chi square,

Mean value, H13, SD13
91.09% 84.1%

Klassmaster Shannon entropy, Hamming weight, Mean value, D13, SD13, V3,
Chi square, SD3, V12, D3, H3, H13

80.26% 38.9%

ProGuard Hamming weight, D13, SD13, Shannon entropy, D3, SD3, H13,
Chi square, H3, Mean value, V3, V12

90.38% 81.1%

DexGuard Shannon entropy, Hamming weight, Mean value, SD13, D13, V3,
Chi square, SD3, V12, D3, H3, H13

80.64% 55.6%

Allatori Hamming weight, Shannon entropy, V3, H3, V12, SD3, D3, Chi square,
Mean value

82.63% 65.4%

In our proposed approach, we considered nearly all types of
code obfuscation options available with an obfuscator tool
separately, only excluding user-custom options (for e.g., where
a user provides a custom encryption algorithm). Finally, the
underlying technique chosen is different. They mainly focus
on string-based features of the .dex file but for control-flow
modification they extracted instruction sequence n-grams, i.e.,
different types of features for different configurations. More-
over, the existing approach could not tackle other common
obfuscation options like string encryption, merging and split-
ting functions, as the string-based model failed to represent
other relevant properties from the .dex file. On the other hand,
we utilize spatial analysis to reveal obfuscation patterns on the
.dex file. The main advantage of using spatial analysis is that
it will always exhibit distinctive traces varying in intensities
that will uniquely fingerprint any obfuscator. While we are
not as accurate as Wang and Rountev [11] (97% vs 90%), the
result shows that the same type of statistical features have the
potential to fingerprint obfuscation tools even when they are
employed for simple or advanced level of code modification.

VI. CONCLUSION

In this paper, we have presented an approach for analysing
the presence of obfuscation in Android binary files through the
use of spatial texture analysis. Advantageously, this technique
can be implemented in real-time to classify an Android app
by the fingerprints generated from the repository (Figure 1).
Our results show that obfuscation tools leave behind traces
that form unique patterns distinct for different tools. The
straightforward analysis of the first-order statistics showed that
we can easily distinguish the Bangcle obfuscator. However the
more advanced obfuscation techniques require deeper insight
into binary files which is achieved with second-order statistical
analysis. In our experiments, we observed that the proposed
technique can indicate the degree of similarity between the
obfuscators, and show the subtle changes caused by different
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TABLE XIV
FINGERPRINTING WITH MIX FEATURES & DATA DATASET

Obfuscator Feature Group Accuracy Precision
Allatori V3, H4, SD7, H7, H3, D2, H2, Shannon entropy, H13, D3, SD4, D4,

SD3, SD2, V7, V4, D7, Hamming weight
71.82% 64.5%

Klassmaster Hamming weight, H3, SD3, D3, H2, SD2, H4, V7, V4, Shannon entropy,
H7, H13, D2, SD4, V3, D7, D4, SD7

70.28% 61.3%

DexGuard Hamming weight, H3, V7, SD3, D3, V3, H13, H2, H4, SD7, V4, SD4,
D4, D7, H7

84.97% 84%

TABLE XV
FINGERPRINTING WITH MIX FEATURES & CONTROL DATASET

Obfuscator Feature Group Accuracy Precision
Allatori SD13, SD7, H13, D3, D4, H12, H7, H6, H2, H3, H4, D6, D7, D12, SD4,

SD6, V13, SD3, V12, D13, V4, V6, V7
67.85% 54.7%

Klassmaster Hamming weight, SD7, H13, D3, D4, H12, H7, H6, H2, H3, H4 66.96% 52.5%
DexGuard SD13, D7, SD7, D13, H12, SD3, Hamming weight, D3, V13, H13, H7,

H4, H2, SD4, D4, SD6, D6, V6, H6, V4, V12, D12, V7, H3
84.09% 82.8%

configurations of the same obfuscator. To show the potential of
fingerprinting the obfuscators, a series of binary classifications
has been performed for different obfuscators with different
obfuscation types. The result shows, with selected group of
Haralick features, by using the recommended classifications
algorithm, the accuracy of distinguishing an obfuscator is at
least more than 80% for the Default and Layout dataset and
not less than 65% for the Data and Control dataset. We further
mixed the first and second order features to see if overall
results are improved. In that case, we saw a slight increase
in the accuracy of distinguishing an obfuscator.

Our future work involves investigation in several directions.
We believe that the first-order statistics should be fully utilized
in a way to extract more detailed information about the
obfuscators. Further a larger dataset should be established so
that all the features can be put to a stricter test. Last but
not least, this technique can be further extended to fingerprint
specific algorithms used on a particular file.
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