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ABSTRACT

Since the first computer virus hit the Advanced Research
Projects Agency Network (ARPANET) in the early 1970s,
the security community interest revolved around ways to
expose the identities of malware writers. Knowledge of the
adversarial identities promised additional leverage to security
experts in their ongoing battle against those perpetrators.
At the dawn of computing era, when malware writers and
malicious software were characterized by the lack of expe-
rience and relative simplicity, the task of uncovering the
identities of virus writers was more or less straightforward.
Manual analysis of source code often revealed personal, iden-
tifiable information embedded by authors themselves. But
these times have long gone. Modern days malware writers
extensively use numerous malware code generators to mass
produce new variants and employ advanced obfuscation tech-
niques to hide their identities. As a result the work of security
experts trying to uncover the identities of malware writers
became significantly more challenging and time consuming.

To gain insight into the identity of an adversary, we turn
our attention to authorship attribution research, which offers
a broad spectrum of techniques for identifying an author of
a document, based on the analysis of an author’s writing
style. Equipped with these methods, we explore attribution
of Android binaries and the role of features related to the
development process on the determination of Android binary
authorship.

Within this context, we propose an incremental approach
to perform authorship attribution of Android apps. First
to a set of known authors and then the generation of new
profiles for unknown apps. We assess the effectiveness of our
approach on several sets of malicious and legitimate Android
binaries produced by actual developers, as opposed to using
artificially created authors’ data. We achieve 97.5% accuracy
on these authors’ data. We further evaluate our approach
on more than 131,000 apps collected from various sources
including 10 different markets around the globe.
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1 INTRODUCTION

Since the appearance of the first computer virus, the secu-
rity community interest revolved around ways to expose an
identity of an adversary. In the early days this was often
possible due to relative simplicity of malicious software and
inexperience of malware writers. Manual analysis of a code
often revealed personal, identifiable information embedded
by authors themselves [20]. However, with the extensive use
of advanced obfuscation techniques and wide availability
of malware code generators that allow malware authors to
rapidly produce mass numbers of new variants, this process
became significantly more challenging requiring advanced
methodologies. These methods found in authorship attribu-
tion research, are referred to as stylometry. Well-established
in social science, it offers a broad spectrum of techniques
aiming to characterize an author of a document given a set of
textual features that quantify an author’s writing style [22].
The underlying assumption of attribution is an existence of
an inherent distinctive writing style, unique to an author and
easily distinguishable among others. Quantified representa-
tion of this style can be viewed as a fingerprint.

One of the main difficulties in the field lies in compiling
such a fingerprint that provides efficient and accurate char-
acterization of an author style. In the traditional setting,
authorship attribution relies heavily on information that al-
lows deeper linguistic analysis of author’s works (e.g., richness
of vocabulary, tense of verbs, semantic analysis of sentences).
In software field, emphasis is mostly put on surface character-
istics such as variable naming, program layout, and spacing,
that reflect textual nature of source code [5]. Such approach is
merely dictated by the nature of the field that in many cases
fails to provide original source code of software (e.g., malware
analysis, commercial software theft) leaving researchers with
its binary representation. Unfortunately, such binary code
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retains very few of the surface characteristics. As a result
in the recent years a few studies shifted its focus towards
analysis of program binaries [7, 18, 19],

This shift was also driven by practical objectives. Such
digital fingerprint of an author retrieved from a malicious
program binary can potentially serve as a single signature
for attributing suspicious executable to that author. From
a practical perspective, the immediate benefit of malware
author attribution is clear: instead of detecting every mal-
ware strain using narrow specialized signatures, we could
effectively characterize all malware variants generated by its
author. This approach allows us to significantly reduce the
computational resources required for malware detection.

In this work, we explore this angle focusing specifically
on mobile domain. Just in the first quarter of 2017 G-data
labs reported registering around 8,400 new malware samples
daily [16]. They estimated that 3.5 million of new malware
samples will be discovered this year. In their analysis from
2016, Kaspersky Labs [15] reported a big grown in Banking
malware and trojan-ransomware that are able to bypass
security mechanisms in GooglePlay bouncer and new versions
of Android.

In this study, we propose an approach for authorship at-
tribution of Android apps using a set of features related to
author’s decision over an application development process,
specifically, metrics about the structure of the app extracted
from .dex files, such as number of employed methods, classes,
fields, strings, etc. We specially focus on the usage of data
structures and opcodes associated with data structures ma-
nipulations. Data structure features were among the basic
set of programmer’s attribution measures proposed in funda-
mental work of Spafford et al [21] for attribution of binary
code.

We validate our approach on a set of manually collected
Android applications published from 37 authors in different
markets. We further evaluate it with over 30,000 apps from
known different malicious sources, official market and eight
third-party markets.

Finally, we perform a large-scale study of over 160,000
Android applications from official Google market and Virus
Total stream service.

The remainder of the paper discusses the related work
in Section 2. It introduces features employed in Section 3,
presents the details of proposed approach in Section 4. Data
employed is described in Section 5. Validation and evaluation
results are in Section 6. Section 7 concludes the paper.

2 RELATED WORK

The problem of program authorship attribution is not new. Its
feasibility has been shown in a small pilot study by [14] and
has since revolved around the idea of attributing source code
through various characteristics of a programmer style [11].
The consistency of programming style formed a foundation of
software author attribution [11]. Recently, Burrows et al [4]
systematized techniques for attributing source code. One of
the largest focuses in this context is plagiarism detection [5,

Figure 1: The structure of a .dex file

23]. Since source code is available, such detection mostly
entails analysis of syntactical features (e.g., format alterations,
renaming, control replacement). However, due to the lack of
malware source code, these features have limited applicability
beyond the plagiarism domain.

In malware analysis, the majority of research focused on
analysis of binaries, e.g., behaviour of the software [24], API
calls [6], and control flow [12]. Although the primary focus of
these approaches was extraction of ‘software birthmark’, i.e.,
a combination of unique software characteristics, the results
of these studies can be complementary to author attribution
and should be further explored in this context.

The problem of binary attribution has been explored by
Rosenblum et al. in a series of studies [18, 19] that investi-
gated tool-chain provenance. The studies confirmed feasibility
of automating a discovery of details that characterize the pro-
duction process of a given binary (e.g., the compiler family,
versions, optimization options and source languages). This
approach was later extended by Alrabaee et al. [1]. The
authors employed a multilayer approach integrating syntax-
based and semantics-based features. Binary analysis was also
explored in attribution of metamorphic malware to malware
generation engines by Chouchane et al. [7].

Although all these results showed high accuracy of attri-
bution among well defined engines/tool-chain components,
the question of applicability of these results to extracting
unknown developers’ fingerprints remains. We propose a
framework to attribute Android apps to a known group of
authors and to unknown groups.

3 BINARY ATTRIBUTION

One of the first cases of authorship attribution over malware
binary code for forensics purposes was offered by Spafford
and Weeber in 1992 [21]. Spafford and Weeber believed that
every programmer has its own unique style. Investigating a
security breach, this authors connected the manual writing
recognition used by law-enforcement to identify people, with
the task of analysis of residual code in a security incident to
identify an adversary. As a result of this study, several groups
of features for binary code attribution were proposed, among
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them are features related to programmer’s style and expertise
(e.g., presence of error handling) and features related to the
development process (e.g., employed data structures, systems
calls, tools).

The tell-tale signs of tools indicating the origin of exe-
cutable have been successfully explored in previous stud-
ies [7, 9]. In this work we also focus on the features related
to the development process and explore the impact of the
number of employed methods, classes and data structures,
and opcodes associated with data structures on attributing
Android apps to an author.

Android background. An Android application, an apk
file, is a compressed folder that contains a variety of files
including an executable .dex file; AndroidManifest.xml file
that describes the content of the package, resource files (e.g.,
image, sound files), and optional native code that is usually
called from the classes.dex file.

A classes.dex file is a binary that results from compiling
the app’s Java source code. As illustrated by Figure 1, this
file is partitioned into different sections that describe the
structure of the file.

Among them are several identifier lists that contain offsets
pointing to the corresponding entries in the data section.
As such string identifiers list (string ids section) provides
offsets to all strings used by .dex file, while class identifier list
contains offsets to the information related with classes. This
class information list contains offsets pointing to method’s
information, this method’s information contains offsets to
the actual code that belongs to it. The code section include
binary information (bytecode) about opcode and employed
in-line data structures.

In this work, we focus on the use of types, methods, classes,
fields, data structures employed and the opcodes related to
data structure usage contained in method’s code section. To
reduce the amount of opcodes to analyze, we employ a filter to
discard previously known or analyzed common code [10]. The
statistics from this percentages of methods are also included
in our feature vector.

Employed features. While programming in Java, an au-
thor could choose between several data structures to fulfill
her purposes. After compiling the code data structures look
different from basic arrays. Let us review as an example
the Java code in Figure 2 that includes data structures and
arrays. Line 28 that uses a hashtable is transformed in the
following smali representation:

const/4 v8, 0x1
iget-object v1, p0,

Lcom/gsg/test1/MainActivity;->
numbers:Ljava/util/Hashtable;

const-string v2, "one"
invoke-static {v8}, Ljava/lang/Integer;->

valueOf(I)Ljava/lang/Integer;
move-result-object v3
invoke-virtual {v1, v2, v3},

Ljava/util/Hashtable;->
put(Ljava/lang/Object;Ljava/lang/Object;)
Ljava/lang/Object;

Figure 2: Basic Android java code that include data
structures and arrays.

The creation of array of integers in line 39 is represented in
smali as:

const/4 v7, 0x3
new-array v1, v7, [I
fill-array-data v1, :array_0
:array_0
.array-data 4

0x2
0x4
0x6

.end array-data

For the final example, string array from line 43 is represented
in smali as:

new-array v0, v7, [Ljava/lang/String;
const/4 v1, 0x0
const-string v2, "Larry"
aput-object v2, v0, v1
const-string v1, "Moe"
aput-object v1, v0, v8
const-string v1, "Curly"
aput-object v1, v0, v6
.local v0, "aStooges":[Ljava/lang/String;

The decisions and experience of a developer will impact
in the way data structures are used in the Android app.
This usage could be related to the functionality of the app.
However, it is our believe that developers decisions influence
more on the usage of data structures than the functionality
of the app. Basic arrays are meant to store data of similar
type, these are very common in Android development and
are used in almost all Android apps. A quick analysis of app
extracted from GooglePlay market confirms this intuition.
Figure 3 gives us an overview on how Android programmers
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Figure 3: Array usage and array’s size distribution from GooglePlay market.

Table 1: Array- unrelated features

total number of classes
total number of classes containing interfaces
total number of classes containing information about source file
total number of classes containing annotations
total number of classes containing data
total number of direct methods
total number of virtual methods
total number of abstract methods
total number of methods containing try and catch
total number of methods containing debug information
total number of static fields
total number of instanced fields
total size of instructions expressed in bytes

Figure 4: Automatic incremental learning for attri-
bution framework

use array data structures in legitimate apps (see GooglePlay-
2015 dataset in Table 3 for details). Out of 4517 apps only
106 (2%) did not employ arrays. Among the rest, the majority
of apps use at least 300 array structures.

Figure 3 shows distribution of array’s size. The largest
size includes more than 14,000 elements while the smallest
array has only 5 elements. The average size of an array is
37.54 elements with an standard deviation of 239.29 elements.
This large deviation shows that the usage of arrays can be
a potential indicator of an author’s distinctive development
style. Along with the rest of the data structures employed in
the app.

Table 2: Array related bytecode mnemonics

Opcode bytecode Description
ARRAY
LENGTH

Store the length of the indicated array in
the given destination register .

NEW ARRAY Construct a new array of the indicated
type and size.

FILLED NEW
ARRAY

Construct an array of the given type and
size, filling it with the supplied contents.

FILLED NEW
ARRAY RANGE

Similar as previous.

FILL ARRAY
DATA

Fill the given array with the indicated
data

AGET, AGET
BOOLEAN,
AGET BYTE,
AGET CHAR,
AGET SHORT,
AGET WIDE,
AGET OBJECT

Perform array operation at the identified
index of the given array, loading into the
value register.

APUT, APUT
BOOLEAN,
APUT BYTE,
APUT CHAR,
APUT SHORT,
APUT WIDE,
APUT OBJECT

Perform array operation at the identified
index of the given array, storing into the
value register.

4 AUTHORSHIP ATTRIBUTION
FRAMEWORK

The goal of the proposed approach is to systematically at-
tribute Android apps to corresponding author’s profiles. Typ-
ically, attribution studies in literary domain focus on identify-
ing an author of a sample out of a set of candidates based on
sample’s similarity to stylistic discriminators found in bench-
mark profiles. In malware domain, this has a limited value
as benchmark profiles only represent a small set of known
authors. As such, it is necessary to step beyond the known
set and group stylistically similar binaries not attributed to
the existing profiles as they might potentially be linked to a
new author.

The proposed framework incorporates two components: a
profile construction focusing on creating benchmark profiles
for known authors, and an incremental analysis, responsible
for a ongoing analysis of Android binaries, their attribution
to the existing benchmark profiles and the generation of
new profiles for stylistically similar binaries refereed to as
emerging profiles. The overview of the framework is given in
Figure 4.
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The framework takes as an input an Android app. As the
first step, the list of data structures used in the incoming
app is extracted, then this app is parsed to retrieve bytecode
from .dex file which is then analyzed to extract the rest of the
features. To reduce the overhead in classification and speed
up the process, common code is discarded. To determine and
extract common code we follow a procedure explained in [10].
From the remaining bytecode, values related to array size,
array operations (see Table 2), and values related to classes,
methods and fields (Table 1) are extracted. These raw values
are abstracted into a feature vector composed of four parts:
(1) a fixed number of features from the numerical values
of classes, methods, and fields; (2) the statistic values from
size of array definitions, average, mean, median, standard
deviation and variance; (3) variable length features extracted
from the values of n-grams created from array operations
opcodes and (4) the n-grams created from data structures
detected. Since the resulting vector of features has variable
lenght, we employ a mapping technique presented by Rieck et
al [17] to convert it into a fixed length array. In this process
each n-gram is hashed, then a number of bytes is chosen to
represent the index on a sparse vector. This feature vector
serves as a basis for grouping stylistically similar binaries.

Profile construction. The first framework component
is responsible for generating the baseline model for further
detection and clustering analysis. It can be viewed as a
supervised authorship attribution problem; that is given a
set of Android authors 𝐴 = 𝑎1; 𝑎2; 𝑎3; . . . ; 𝑎𝑖; . . . ; 𝑎𝑛 and their
respective apps 𝑎𝑖 = 𝑎𝑝𝑝1; 𝑎𝑝𝑝2; 𝑎𝑝𝑝3; . . . ; 𝑎𝑝𝑝𝑚 to generate
a model that can be used to attribute Android binaries to
a given set of fixed authors. The aim is, given an apk file
𝑎𝑝𝑝𝑥, to determine who among these authors wrote it. We
use machine learning techniques with prediction probability
capabilities to build this model. We use Random Forest
prediction as a classifier to build this model.

Random Forest classification algorithm was proposed as
a bagging technique with an additional layer of randomness.
When building standard trees, each node is split using the
best split among all variables. In a Random Forest each
node is split using the best split among a subset of variables
randomly chosen at this node. Although this strategy might
seem counter intuitive, it is quite robust and turns out to
perform very well even in the presence of overfitting [3].

Incremental analysis. Once the model outlining bench-
mark profiles is generated, an incremental component is
responsible for attributing new apps to the existing profiles
(classification) and discovering new possible profiles (nov-
elty detection and clustering) for Android apps that were
not attributed yet to existing authors. Novelty detection of
multiple classes is not studied as well as detection for one
class at a time [8]. Here we propose an approach that let us
create multiple classes from apps not seen before, and cluster
them using same results from class prediction. This process
is outlined in Algorithm 1. The algorithm takes as input
apps to be processed (𝑎𝑝𝑝𝑠), thresholds (𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

𝐺𝑟𝑜𝑢𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 to group similar apps. It of-
fers as output apps attributed (𝑎𝑝𝑝𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑) and apps to
create new profiles (𝑎𝑝𝑝𝑠𝐹𝑜𝑟𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠). The assignment
of new apps to a 𝑏𝑢𝑐𝑘𝑒𝑡 is based on the probability score of
an 𝑎𝑝𝑝 belonging to an existing profile, or similarity between
incoming apps, if a new profile needs to be formed.

Similar to profile construction step, we employ Random
Forest classification to calculate a probability score of a given
app being a part of each of the benchmark profiles. However,
any machine learning method that gives a probability could
be employed.

If a probability exceeds a defined 𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (we
experimented with several values), we attribute this instance
to a predicted author profile (line 9), otherwise this proba-
bility is used to analyze app similarity with other apps(line
12). In other words, if app is scored to be a part of profile
𝐴 with 98%, it is automatically assigned to that author’s
profile. However, if the probability score is 20%, then it is
clustered with other apps that are also given 20% probability
of being a part of profile 𝐴. The intuition behind this is sim-
ple: even though these apps are not close enough to profile
𝐴, they share common attributes and can potentially form a
new candidate profile. How the apps are clustered is guided
by bucket size, e.g., with a bucket size of 10, for any given
profile apps with a score 0-10%, 10-20%, 20-30%, etc. will be
grouped together.

Algorithm 1 Minibatch Cluster and Classify algorithm

1: function Incremental profile discovery

2: input : 𝑎𝑝𝑝𝑠
3: input : 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

4: input : 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

5: input : 𝑏𝑢𝑐𝑘𝑒𝑡𝑠
6: output : 𝑎𝑝𝑝𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑, 𝑎𝑝𝑝𝑠𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠

7: for each 𝑎𝑝𝑝 in 𝑎𝑝𝑝𝑠 do
8: Calculate 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒

9: if 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

10: Add 𝑎𝑝𝑝 to 𝑎𝑝𝑝𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑
11: else

12: Grouping 𝑎𝑝𝑝 into 𝑏𝑢𝑐𝑘𝑒𝑡𝑠

13: end if
14: end for
15: for each 𝑏𝑢𝑐𝑘𝑒𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 do

16: if number of apps in 𝑏𝑢𝑐𝑘𝑒𝑡 > 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
then

17: Remove outliers from 𝑏𝑢𝑐𝑘𝑒𝑡
18: Create 𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒 from 𝑏𝑢𝑐𝑘𝑒𝑡

19: add 𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒 to 𝑎𝑝𝑝𝑠𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒
20: end if
21: end for

return 𝑎𝑝𝑝𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑, 𝑎𝑝𝑝𝑠𝑁𝑒𝑤𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠

22: end function

The next step is to assess how similar these unassigned
apps are within their respective groups and filter out poten-
tial outliers (line 17). The similarity between grouped apps
is calculated based on Cosine Similarity (𝐾(𝑋,𝑌 )) which
computes the normalized dot product of X and Y as follows:
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𝐾(𝑋,𝑌 ) =
⟨𝑋,𝑌 ⟩

(‖𝑋‖ * ‖𝑌 ‖) (1)

To define outliers, first we found maximum distance among
instances, calculate average, standard deviation, and quartiles
(𝑞1, 𝑞2, 𝑞3). Then we decide on an outlier threshold between
a naive approach inspired by standard deviation detection
and the standard box plot rule (Equation 3). Instead of
deciding 2 standard deviations as a threshold for upper outlier,
we defined the average of maximun distance and average
distances(Equation 2).

𝑜𝑢𝑡𝑙𝑖𝑒𝑟 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

2
(2)

𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑏𝑜𝑥𝑝𝑙𝑜𝑡 = 𝑞3 + 𝑖𝑞𝑑 * 3 (3)

In Equation 3 𝑞1, 𝑞3 represent lower and upper quartile, and
𝑖𝑞𝑑 = 𝑞3− 𝑞1 is interquartile distance.

Finally, an outlier is flagged if more than half of similarity
distances are over this outlier threshold (we experiment with
different outlier thresholds as such as maximum or minimum
of the previous values, and with no outlier detection at all. )

If the resulting clusters of apps is over the𝐺𝑟𝑜𝑢𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
(several values were explored), it forms a new candidate pro-
file(line 18). It is important to note that this probability-based
clustering is employed to avoid expensive pair-wise compari-
son among all unassigned apps. Apps not attributed in this
round, will be assessed in next round, this time including
new candidate profiles discovered in the last round.

Our model is retrained to incorporate new candidate pro-
files discovered in previous step. Note that as opposed to
benchmark profiles that include validated information about
their authors, these new profiles are limited to a label that is
created automatically from originating profiles, probability,
and number of apps in a newly created group.

5 DATA

To evaluate our proposed approach and study for the auto-
matic creation of author label profiles, we gathered a large
collection of 196,385 unique Android applications from differ-
ent sources that we employed for various stages of analysis
(Table 3).

To validate our approach we carefully selected some apps
from “markets dataset” that contain the same serial certifi-
cate number used to sign these apps. We omitted public,
leaked and debug certificates which anyone can have access
to. Then we manually verified apps from the remaining 43
authors. To ensure that only unique apps were used in our
analysis, all apps with duplicate .dex files were removed, au-
thors with less than 20 apps were also removed. We finally
obtained a set with 33 authors and 1428 apps.

Since these authors were deemed to be legitimate (veri-
fied through VirusTotal website), we also searched for those
who produce malicious apps. For this purpose we employed
Kooduos collaborative system [13], collecting groups of apps
with the same certificates and flagged as malicious. This
process produced a set of 222 apps from 10 different authors.

In addition to this, we retrieved 131 malware apps produced
by Hacking Team, identified in Kooduos system by a commu-
nity yara rule. These apps presumably from Hacking Team
contain different certificates. If they are written by the same
set of people, our system should be able to recognize this.

To explore the benefits of our approach in practice, we also
collected apps from a number of other sources. Specifically,
several malware families from Drebin dataset [2]; 1,395 apps
from open source market Fdroid; 10 adware and ransomware
families; 4,574 apps collected from Google Play; 23,656 apps
from eight third-party markets; and 116,264 apps retrived
from VirusTotal stream.

Details of datasets are shown in Table 3.

6 EXPERIMENTAL RESULTS

On our experiments, we aimed to evaluate several aspects of
our approach:

(1) Validate the effectiveness of the proposed approach in
attributing apps to the corresponding authors.

(2) Investigate the effect of𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and𝐺𝑟𝑜𝑢𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
on accuracy of attribution.

(3) Assess the ability of the incremental analysis compo-
nent to attribute unknown apps and generate emergent
profiles.

(4) Evaluate our approach capability to attribute a stream
of wild data to the existing profiles.

6.1 Validating effectiveness

To validate the proposed approach, we employed our man-
ually labeled Authors dataset and performed 5-fold cross-
validation in all experiments. The classification was based
on authors’ feature vectors composed of classes, fields and
methods information, data structures employed and array
related mnemonics. Since the amount of features containing
application structure related values is stable, a major concern
is a potentially significant amount of generated n-grams from
data structures and array related opcodes. We evaluated the
approach accuracy for values of 𝑛 ranging from 1 to 8, then
embedding the results into a fixed length array of 541, 1053,
2077, 4125, 8221, 16413, 32797, 65565 and 131101 features.
The results are presented in Table 4.

The best result in terms of accuracy is 98.12%, with 8-gram
and 65565 features, and 158 seconds in average to perform
the classification. With a large number of features the time to
perform training and testing increases. With a large number
of n-grams the time to extract and represent the features
increases. We decide to choose not the best accuracy, but
the best trade-off between accuracy and time based on the
n-grams and number of features. The selected parameters
for future experiments are 3-grams with 2077 features, which
lead to an accuracy of 97.7% and 68 seconds on average to
perform classification.

6.2 Tunning thresholds

The proposed incremental analysis approach relies on three
different thresholds for attributing binaries and forming
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Table 3: Datasets

Name Apps Description

Authors dataset 1,444 Collected from eight different markets, this dataset contains
information about 37 known authors with more than 20

apps in the markets, based on the assumption that same

serial numbers certificates leads to same author (without
considering public or leaked certificates)

Malicious authors 222 Collected from koodous system, this dataset contains at

least 10 unique and malicious apps from 10 different authors.

We use the same assumption that similar certificates lead
to same author.

Hacking Team apps 131 Mobile apps offered by surveillance malware vendor Hack-

ing Team. They were collected from koodous system from
community ruleset 675.

Drebin partial dataset 3,181 From the original dataset, we only retained 47 malware

families with more then 20 apps.

Adware dataset 211 Three related families (kemoge 90, shedun 97, shuanet 24)
known to trojanize legitimate apps.

Ransomware dataset 408 Ransomware including the following seven families, fakeDe-

fender 44, koler 74, Pletor 16, RansomBO 100, scarePakage
2, sLocker 72 and svpeng 100

Fdroid dataset 1,395 Open source apps without advertisement libraries.

GooglePlay-2015 dataset 4,574 Apps collected from Google Play in middle 2015 from all
categories, top popular and top new.

Markets dataset 23,656 Apps collected from the following third-party markets: 360,
3gyu, anzhi, aptoide, mobomarket, nduoa, tencent, xiaomi.

GooglePlay-2016 dataset 898 Apps collected in January 2016.

VirusTotal stream 116,264 Suspicious apps provided by VirusTotal service.

Total 196,385

Table 4: Accuracy results over 5-fold cross validation
for different n-gram values

N-grams # features Performance
(sec)

Accuracy

8 65565 158.61 98.12 %
5 32797 102.67 97.85 %
4 131101 92.49 97.84 %
7 65565 140.46 97.83 %
8 131101 171.01 97.77 %
6 65565 122.47 97.77 %
4 16413 84.83 97.76 %
5 16413 102.14 97.76 %
3 2077 68.69 97.71 %
6 131101 128.21 97.71 %
5 131101 111.39 97.70 %
4 65565 86.27 97.70 %
5 4125 102.64 97.69 %
7 131101 149.31 97.69 %
5 8221 102.75 97.63 %

new profiles: 𝑁𝑜𝑣𝑒𝑙𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and
𝐺𝑟𝑜𝑢𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. We conducted a series of experiments to
determine the impact of these thresholds on attributing apps
using Authors’ dataset. Our classifier was trained on 75% of
the authors (i.e., 25 authors and their corresponding apps)

and tested on the remaining 8 authors. Since traditional met-
rics for evaluation of classification accuracy did not reveal
enough information about how the apps were attributed, we
used several other metrics to help us assess the behavior of
thresholds. Specifically, we evaluated thresholds in terms of
percentage of attributed apps 𝐴𝐴, percentage of correctly
attributed apps among all considered apps 𝑇𝐶𝐴, and a per-
centage of correctly attributed apps among those that were
attributed to some profiles (𝐶𝐴).

𝐴𝐴 =
𝐴𝑝𝑝𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑝𝑝𝑠 𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑑
(4)

𝑇𝐶𝐴 =
𝐴𝑝𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑝𝑝𝑠 𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑑
(5)

𝐶𝐴 =
𝑇𝐶𝐴

𝐴𝐴
=

𝐴𝑝𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑

𝐴𝑝𝑝𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑
(6)

For this analysis, we also experimented with several bucket
sizes: 10, 15, 20, 30 and three scenarios for filtering outliers:
no outliers filtering (𝑁𝑜), maximum (𝑀𝐴𝑋) or minimum
(𝑀𝐼𝑁) between values defined to detect outliers. To avoid
situations when 2-3 apps form a new profile, the minimum
number of apps required to establish a profile was enforced as
𝐺𝑟𝑜𝑢𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, we experimented with 20, 15, 10, 7, 5 apps
as minimum (20 is the least amount of apps in the dataset).
The best results are showed in Table 5.

While we can achieve over 96% in correctly attribute apps
(𝐶𝐴), 𝐴𝐴 and 𝑇𝐶𝐴 values are below 80%. The highest
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Table 5: Thresholds tuning using Authors’ dataset

Bucket size Min num of apps allowed Outliers Total apps 𝐴𝐴 𝑇𝐶𝐴 𝐶𝐴

10 7 MIN 361 78.77 % 76.39 % 96.97 %
10 10 MIN 396 74.82 % 71.61 % 95.71 %
10 5 MIN 387 83.87 % 80.64 % 96.15 %
10 5 NO 325 85.99 % 80.30 % 93.38 %

15 10 MIN 377 78.41 % 75.52 % 96.31 %
15 5 MAX 415 88.09 % 80.47 % 91.35 %
15 5 NO 374 87.10 % 82.26 % 94.45 %

20 5 MIN 402 87.62 % 81.67 % 93.21 %

30 5 MIN 361 88.43 % 79.48 % 89.89 %
30 10 NO 420 86.48 % 75.02 % 86.74 %

amount of attributed apps (𝐴𝐴=88.43%) was achieved with
a bucket size of 30 and 5 apps as a minimum. Similar results
were received with a bucket size of 15 and 5 minimum apps,
that is 87% with no outlier detection, and 88.09% with max-
imum outlier detection. Since the difference between these
results is insignificant, other factors have to be taken into
consideration. One of these is the presence of outliers detec-
tion. Generally, additional processing of candidate profiles
incurs an overhead on the system, so with equal performance,
it is desirable to avoid this overhead. It is interesting to note
though that these threshold settings (bucket size of 15, 5
minimum apps, and no outlier detection) also provide the
highest amount of correctly attributed apps among these
options (94.45%). These are the parameters we will employ
throughout the rest of the experiments.

We repeat the same experiment, with Malicious authors
data. The best 10 results based on 𝑇𝐶𝐴 value are shown in
Table 6. The performance under different settings is similar.
The highest amount of apps is attributed with bucket size of
20, 5 minimum apps and no outlier detection (𝐴𝐴=80.47%
with 𝐶𝐴=70.70%). However, the threshold parameters se-
lected in the previous experiments reached very similar result
(𝐴𝐴=78% and 𝐶𝐴=71%).

6.3 Incremental analysis

Given the optimal thresholds obtained in the previous round
of experiments, we turned our attention to incremental anal-
ysis component.

Starting with benchmark profiles, we sequentially feed our
system with the following datasets in this order: Hacking
team, Drebin, Adware, Ransomware, Fdroid, GooglePlay-
2015 and Markets datasets. This experiment was conducted
in two phases: malicious data first, followed by the last 3
datasets. The results from the first phase are given in Table 7.
The overall attribution rate for each of the datasets is fairly
high, reaching 100% in case of apps coming from the Hacking
Team. Out of attributed apps, the majority were assigned to
labels (emergent profiles) generated for a given set (90% of
attributed Hacking Team apps were part of 3 new profiles).
For the malicious data, it is safe to assume that apps attrib-
uted to benchmark profiles are labeled incorrectly. Intuitively,
this makes sense as original benchmark profiles were built on

benign data and thus attribution of malware to legitimate
profile is likely to be an error. The overall percentage of these
miss attributed apps across datasets in this phase ranged
between 9-0%.

The second phase focused on the datasets thought to be pri-
marily benign. As a result of this experiment, Fdroid dataset
produced 124 emergent profiles, Googleplay2015 dataset pro-
duced 733 profiles and Markets data produced 94 new profiles.
Even though we did not expect any apps to be attributed
to profiles generated in the first phase, less than 10 apps
overall were labeled as part of these malicious emergent pro-
files. Manual check of these apps revealed some suspicious
behaviour and presence of adware. The percentage of apps
attributed to emergent profiles also dropped compared to
what we saw in case of malicious data. This is likely to be
the result of authors’ diversity, i.e., the number of different
authors contributing to GooglePlay market is significantly
larger than that in Hacking team, as an example.

6.4 Attributing a stream of apps

In practical setting, an analyst might be interested to identify
apps in the wild that are potentially written by a given set
of authors. Using multiple certificates and claiming different
identities is not uncommon on the markets. However, figur-
ing out whether or not apps belong to the same author is
challenging. Having an easy way to attribute unknown apps
to already established and well-known profiles is beneficial
in practice. As such in this experiment we focus on a given
scenario.

We evaluated a stream of over 160 000 wild apps ob-
tained from GooglePlay and VirusTotal using defined thresh-
olds, benchmark and emergent profiles generated by all other
datasets. In this experiment we were not concerned with gen-
eration of new emergent profiles, but were rather interested
to see if any apps captured in the wild can be attributed to
already established profiles. The results are given in Table 8.

With the size of our datasets and the variety of potential
authors, it is not surprising that much smaller percentage of
apps were attributed. 6% of apps in GooglePlay data were
attributed to overall 59 existing profiles and 9% of VirusTotal
set to 104 profiles. Among them, 20% of GooglePlay apps and
25% of VirusTotal apps were attributed to original known
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Table 6: Thresholds tuning for emerging profiles, attributing Malicious authors data

Bucket size Min num of apps allowed Outliers 𝐴𝐴 𝑇𝐶𝐴 𝐶𝐴

10 5 MIN 75.34 % 58.36 % 77.46 %
10 5 MAX 76.96 % 56.76 % 73.75 %
10 5 NO 77.05 % 57.50 % 74.63 %
10 7 MIN 72.32 % 54.91 % 75.93 %

15 5 MIN 78.20 % 56.42 % 72.15 %
15 5 MAX 78.18 % 57.64 % 73.73 %
15 5 NO 78.29 % 55.81 % 71.29 %
15 7 MIN 75.56 % 54.86 % 72.61 %

20 5 MIN 78.99 % 56.73 % 71.83 %
20 5 MAX 80.29 % 54.53 % 67.91 %
20 5 NO 80.47 % 56.89 % 70.70 %
20 7 MIN 77.77 % 54.37 % 69.91 %

30 5 MIN 80.18 % 55.54 % 69.27 %
30 5 MAX 80.36 % 54.44 % 67.74 %
30 5 NO 80.61 % 53.94 % 66.92 %

Table 7: Evaluation of incremental analysis

Dataset Num of
apps

Num of

emerg.
profiles

𝐴𝐴 Apps attrib. to
emerg. profiles

Hacking team 131 3 100% 90% (118)
Drebin 3181 117 50% (1588) 91%(1442)
Adware 211 3 54% (113) 94%(106)

Ransomware 408 12 86% (349) 97%(338)
Fdroid 1395 124 18% (254) 100%(254)
Googleplay2015 4574 733 31% (1442) 20%(289)

Markets datasets 23 656 94 10% (2478) 68%(1681)

Table 8: Attributing stream of wild apps

Dataset Num of apps Num of attrib

apps

Num of pro-

files

Num of apps

attrib to
bench profiles

Googleplay2016 44,915 6%(2921) 59 20%(598)
VirusTotal 116,264 9%(10 717) 104 25%(2721)

and verified benchmark profiles. The remaining attributed
apps were labeled as parts of emergent profiles. As such 9
GooglePlay apps were attributed to a profile dominated by
Hamob malware family. This profile was manually checked
and all apps were verified through VirusTotal service. Our
approach was not designed for malware detection, however
this finding indicates that the same author was involved in
development of samples of this malware family, or at least
in part. This is common in practice and only confirms our
results.

Similarly, among apps from VirusTotal repository 544 apps
were attributed to 31 emergent profiles that were deemed sus-
picious. Checking these apps through VirusTotal service also
confirmed their correct labeling. Among 544 apps, 96.51%
(525) where correctly attributed to various malicious families,
and only 16 apps were detected as benign. Their further man-
ual analysis showed that all 16 apps had the same structure

and used the same set of advertisement libraries in exactly
same way, as a result we assume that they probably belong to
the same source/author and if we were generating emergent
profiles, they would likely form one profile.

6.5 New labels for a known dataset

Using defined thresholds, benchmark and emergent profiles
generated by all previous datasets, we attribute the whole
Drebin dataset, not just the part that we use before to assign
new labels based on possible author profiles.

From 5,555 apps 3,643 remain without known author. The
rest of apps where attributed to 28 probable authors, with a
close match between families and low mixture between fami-
lies and profiles. The whole list of apps and labels could be
downloaded from github.com/hugo-glez/author-labels.
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7 CONCLUSION

In this work we presented an approach to attribute unlabeled
apps to an established set of author profiles and generate
Android developers’ profiles for known apps. Our analysis
is based on author’s development style extracted from vari-
ous features related to authors decisions about development
process, number of employed methods, classes and data struc-
tures, and associated opcodes extracted from Android binary
code. We design and present an incremental Mini batch
classify and cluster algorithm, that employs Random Forest
predictor to determine the probability of an app belonging
to an existing profile. We analyzed almost 35,000 apps and
created 259 profiles. From these profiles, 93 where related to
malicious apps and authors.

We also evaluated over 160,000 apps to further assess
the effectiveness of our approach in attributing apps. Since
ground truth is not available for some employed data, we
can not objectively evaluate accuracy, and thus measure the
number of attributed apps and verify whether these apps are
attributed to suspicious or legitimate profiles.

To the best of our knowledge there are no similar ap-
proaches to compare our work with. Previous works only
work on close-source world where they identify author previ-
ously known. However, our evaluation over a set of known
authors showed similar or better performance.

Our model is completely data driven and is able to create
new author profiles from real Android apps and attribute
unknown binaries to these newly established profiles. Our
results are encouraging and offer an incentive to extend and
continue the development in this area. To facilitate following
research in this area, we release our created datasets to a
broader research community.
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