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Abstract—The rapid adoption of blockchain technologies and
particularly smart contracts has been overshadowed by nu-
merous security concerns. Over the past few years, a number
of reports exposed smart contracts vulnerabilities and exploits,
which mainly stem from the immaturity of the field, and con-
sequently a lack of knowledge and tools for automated analysis
and verification of smart contracts. The restricting properties
of the blockchain environment, such as the immutability of
deployed contracts, encumber the analysis and mitigation of
vulnerabilities and bugs in deployed contracts. To address these
challenges, we propose EtherProv, a novel provenance tracking
system that leverages static and dynamic analysis synergy to
enable detection and mitigation of known security issues in
Ethereum smart contracts. EtherProv leverages Solidity source
code static and dynamic analysis data through contract bytecode
instrumentation. The collected data is transformed into a unified,
high-level representation, which can be queried using concise and
descriptive Datalog queries. Within the provenance framework,
EtherProv is able to analyze contracts’ execution flow over time,
to detect vulnerabilities within a single contract execution flow
and across multiple interacting contracts, and to mitigate new
security threats in already deployed contracts. Our evaluation
shows that EtherProv can efficiently and precisely identify
vulnerable contracts with an average contract instrumentation
gas overhead of 18.9%.

Index Terms—Blockchain, security, provenance, smart con-
tracts, vulnerability-analysis, debugging

I. INTRODUCTION

Blockchain technologies enable different parties who do not
trust each other to share information using a robust consensus
protocol, which eliminates the need for a central authority.
There are over 50 blockchain platforms available in the world
today [1]. Many of them enable the creation and automated
execution of smart contracts, which represent auditable and
enforceable agreements, in a decentralized way. Among them
are Ethereum [2] (the first platform to support smart contracts),
Tezos [3], EOS [4], Cardano [5], and Hyperledger Fabric [6].

A smart contract (abbreviated as contract) is a piece of
computer code that enables users to create their own arbi-
trary rules for ownership and state transition functions. The
contract is written in a high-level language such as Solidity
and is compiled into bytecode, e.g., EVM (Ethereum Virtual

Machine) bytecode in the Ethereum platform. With the wide
adoption of contracts, their security emerged as a critical
concern. As any software code, contracts are susceptible to
security vulnerabilities and exploits. Due to the immaturity of
the field, the contract developers often lack security knowledge
to ensure a contract’s secure execution, thus the burden of
security verification falls solely on the existing tools and
platforms.

The majority of the current security verification approaches
that address known security issues leverage static analysis
of source code [7]–[10] or bytecode [11], [12]. Analysis of
the Solidity source code provides substantial benefits over
bytecode analysis, as a large amount of information is lost in
the compilation process. Bytecode analysis incurs imprecise
resolution of memory and storage offsets when identifying
variables [11], and jump targets when identifying stack lo-
cations statically [12], which may lead to higher false posi-
tive/negative rates. The static analysis of contracts primarily
aims to discover the presence of potential code security vulner-
abilities. Understanding whether these vulnerabilities are ex-
ploitable requires an analysis of the contracts’ execution flow,
and hence, execution of the contracts’ bytecode. Contracts can
be called by external accounts, as well as by other contracts,
therefore dynamic parameters (e.g., function call parameters,
current storage states), externally called contracts and libraries,
and transaction data, should all be taken into account while
evaluating the vulnerability and exploitability of the contracts.

Current approaches for addressing new security issues
enable the analysis of deployed contracts by modifying a
client node with considerable instrumentation [13]–[15], or by
replaying historic transactions [16]. While these approaches
enable a fine grained data collection and analysis at the
function/instruction level, they incur considerable computation
and storage resources and are thus often not suitable for
practical deployment on a production blockchain.

Due to the immutability of deployed contracts, handling
unaddressed security flaws or malicious behavior is challeng-
ing. For example, in 2016 an exception handling bug, which
was discovered in the popular contract game “King of the



Ether Throne” resulted in gas transfer failures. To resolve
the issue, the developers were forced to manually reimburse
some players and publicly request players to not use their
contract [17] in order to prevent further monetary loss.

As the rate of new security attacks increases, there is a
need for an environment that can facilitate an efficient analysis
and mitigation of deployed contracts’ security issues to reduce
damage and monetary loss in a timely manner. To achieve this,
it is necessary to collect fine-grained contract execution trace,
which we call smart contract execution flow provenance or
execution flow provenance for short.

To address these challenges, we propose EtherProv, a
smart contract execution provenance tracking system that
leverages static and dynamic analysis synergy to efficiently
detect known security issues, analyze new security issues,
and mitigate unaddressed security issues across interacting
Ethereum contracts, and across transaction history.

EtherProv makes use of contract bytecode instrumentation,
which as opposed to the existing approaches, does not require
client node modification or transactions replay. To support
the analysis of contract security issues, EtherProv collects
code information through static analysis and enables tracing
of an execution flow spanning multiple interacting deployed
contracts. This is achieved through efficient control flow graph
(CFG) instrumentation. When a deployed contract is executed,
the execution flow path encoding is emitted to the blockchain,
which can then be retrieved and decoded to the full executed
path. To enable a more thorough analysis, EtherProv collects
on-line dynamic data, e.g., block/transaction ids, caller details,
function call parameters, storage state values, etc. The col-
lected dynamic data and encoded paths are then transformed
to a unified representation and stored in a provenance database
as Datalog facts.

Security analysis in EtherProv is based on the intuition
that while security concerns in contracts may be complex,
once these issues are discovered and defined, they can be
detected by checking a contract’s compliance with the known
security properties. To detect and analyze known security
issues within a single contract and across multiple contracts,
the provenance database is queried using compliance queries
written in Datalog language.

Besides identifying known security issues, EtherProv is
capable of mitigating unaddressed security threats detected
within a deployed contract. Since the execution paths and
their static analysis data are known before the contract ter-
minates, EtherProv enables a dynamic modification of the
control flow execution for specified execution paths in real-
time, e.g., reverting the contract call if a path with specific
(e.g., undesirable) properties is encountered. To the best of
our knowledge, none of the existing approaches support such
mitigation with deployed contracts.

To evaluate EtherProv’s capabilities, we show an analysis
of three well known security vulnerabilities, i.e., liquid ether,
re-entrance, and restricted writes. In comparison with a well-
known contract analyzer, Slither [9], EtherProv is capable of
detecting all issues across contracts. We present a scenario to

illustrate our approach’s analysis of unaddressed security con-
cerns within already deployed contracts. We further evaluate
EtherProv’s mitigation capability on the original “King of the
Ether Throne” contract. As our evaluation shows, EtherProv
can efficiently identify vulnerable contracts with an average
contract instrumentation gas overhead of 18.9%.

To summarize, our main contributions are as follows:
• We propose an efficient path profiling approach inspired

by Ball et al. [18] to accurately capture the execution flow
path across multiple deployed contracts’ interaction, with
low gas consumption and in real-time. This information is
available to the executed contract for real-time security
analysis and can be efficiently retrieved using on-chain
querying for off-line analysis.

• Equipped with contract execution flow provenance, Ether-
Prov enables to efficiently detect contracts’ known se-
curity issues, and analyze and mitigate new/unaddressed
security issues in deployed contracts. The security issues
can span multiple interacting contracts across transaction
history. The code is publicly available1.

• EtherProv uses a unified data schema that enables to
utilize static and dynamic data synergy to efficiently
analyze new security threats, and extract and incorporate
their pattern to be used in detecting future similar known
issues.

II. RELATED WORK

As the size of Ethereum blockchain grows exponentially,
so do the security concerns [19]. Over the past few years
a number of tools were developed to verify the security
properties of smart contracts. These approaches can be broadly
classified into static and dynamic analysis.

a) Static analysis: A number of the security analysis
approaches rely on static analysis of the code, i.e., analysis
of code without its execution (e.g., Slither [9], Vandal [12]).
Static approaches such as Oyente [20], Securify [11], and
Mythril [21] utilize symbolic execution for detecting vulnera-
bilities, i.e., mathematical analysis of different program paths,
which is known to suffer from a path explosion problem. On
the other hand, Solc-Verify [10] leverages formal verification
approach. Using contract code annotated with specifications,
Solc-Verify confirms contract’s properties using SMT solvers.

b) Dynamic analysis: The dynamic analysis based ap-
proaches utilize runtime information for vulnerability analysis.
These approaches generally leverage instrumentation to collect
run-time metrics such as execution time, instruction count,
and gas consumption. Compared to static analysis, dynamic
analysis has been less widely adopted for security analysis of
smart contracts. These include SODA [14], ECFChecker [22],
Sereum [23], HORUS [16] and TXSpector [24].

The existing research studies extract and analyze a contract’s
execution flow using extensive instrumentation of an Ethereum
client [14], [15], [25]. For example, SODA, which is com-
plementary to EtherProv, collects fine grained information at

1https://github.com/shomzy/EtherProv
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the cost of significant resource consumption. While EtherProv
enables collection and analysis of the same data, including
the executed path with considerably less instrumentation and
without modification of the client node.

The instrumentation approach was also adopted by
EVM* [15]. EVM* enables monitoring a contract function’s
execution in real-time by instrumenting the EVM client node
with monitoring and interrupting strategies. In essence, EVM*
collects relevant opcodes, and determines if a transaction
should be terminated or allowed to execute. EVM* is one
of the few systems offering a mitigation strategy for already
deployed contracts. However, its reliance on per opcode eval-
uation is resource consuming and limited to vulnerabilities
and bugs contained within a single function. EtherProv, on the
other hand, enables an on-line reinforcement by instrumenting
the contract’s bytecode, without requiring EVM client node
modification.

In studies that do not leverage instrumentation, a specific
capability of the Ethereum Geth client, which allows to replay
any transaction is required (e.g., [16]). In these cases, all
relevant past transactions need to be executed to reconstruct
the transaction’s storage states, which is resource demanding.

c) Provenance: Data provenance refers to the origin and
change history of data. In database systems, three primary
categories of data provenance [26] have been proposed: Why-
provenance, How-provenance and Where-provenance. They
refer to the ways in which input tuples are related to the output
tuples in a query result. While data provenance deals with data
content, workflow provenance is about the transformation pro-
cess of data that is modeled by a predefined dataflow or control
flow. For blockchain, the states of a blockchain can be referred
to as data provenance and smart contracts’ execution flow can
be considered as workflow provenance [27]. EtherProv collects
smart contract execution flow provenance, which is stored in
a provenance database (see Fig. 1) and queried to investigate
security issues, among others.

III. THE ETHERPROV SYSTEM

The EtherProv system is designed (1) to collect provenance
information for each function’s control flow through static and
dynamic analysis; (2) to detect security vulnerabilities, in a
single contract and across interacting contracts, by checking
compliance with the known security properties; and (3) to
provide tracking and mitigation functionality for transactions
exploiting vulnerabilities in already deployed contracts. The
overview of the system is presented in Fig. 1.

a) Provenance collection: Given a smart contract’s
source code, EtherProv extracts information on control struc-
tures, storage manipulations, and function calls including their
corresponding parameters, following each function’s CFG. The
individual CFGs are then combined to construct an extended
CFG encompassing the entire contract’s control flow spanning
multiple functions’ interactions across contracts. The extended
CFG is then used to encode individual paths and calculate an
efficient paths profiling. The encoded paths, in addition to the
CFG edges that comprise each encoded path, are stored in

the provenance database. To facilitate tracking capabilities and
collection of provenance data during contract’s execution, the
contract’s source code is instrumented along with the extended
CFG’s path. The instrumented contract is then compiled into
EVM bytecode and deployed to the blockchain. Upon the
contract’s execution, the execution’s encoded path is emitted,
which is collected off-chain, along with additional dynamic
data, and stored in the provenance database.

b) Security analysis: The information collected both
statically and dynamically enables contracts’ security analysis.
More specifically, we check a contract’s compliance with
the security properties of known vulnerabilities and provide
context information on the exploitability of this vulnerability
along the executed contract flow; across different execution
flows of the same contract; and across different execution flows
of different contracts across transactions. In this analysis, we
leverage the Datalog language syntax.

c) Tracking & Mitigation: The mitigation component is
designed to analyze a transaction in real-time based on the
collected provenance information. If a transaction execution
violates security properties, EtherProv is capable of dynami-
cally reverting control flow execution for specified execution
path in real-time, effectively interrupting transaction execution.

A. Smart contract execution provenance collection

EtherProv collects fine-grained smart contract execution
provenance through static and dynamic analysis of the
Ethereum smart contracts (Fig. 2).

1) Generating extended CFG: Given the contracts’ Solidity
code, the source code static analyzer extracts static analysis
data (e.g., control structures, storage manipulations, function
calls, etc) from contracts, derived contracts, contract’s func-
tions, variables, interfaces, libraries, following each function’s
control flow. CFG is represented as a graph of nodes. Each
node is provided in two forms of granularity: Static Single
Assignment (SSA) form and non-SSA form. Each Solidity
source code statement may be represented by a single CFG
node in the non-SSA form. In contrast, the SSA form for the
same statement may contain multiple SSA nodes. For example,
for the single-line Solidity statement uint variable =
array[index];, the non-SSA form representing the state-
ment consists of a single non-SSA node. The SSA form
comprises of at least two SSA nodes: one SSA node for
storing the de-referenced array cell in the provided index in
a temporary variable and a second SSA node for storing the
temporary variable in the lvalue variable. EtherProv stores,
for each contract, its Solidity CFG in both SSA and non-SSA
forms. The finer granularity of the SSA form is used to analyze
all commands constituting a statement. The granularity of
the non-SSA form includes the Solidity statements’ code and
location in the source code, which is used to help instrument
the Solidity source code. The mapping between SSA and non-
SSA forms are also stored and used to provide static/dynamic
analysis capabilities in either granularity. Individual function’s
CFGs include information on calls to functions inside the same
contract or to functions in external contracts, when applicable,
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including constructor calls when inner contract instantiation
occurs. In order to enable static analysis of an entire program’s
CFG spanning multiple functions’ interaction across contracts,
EtherProv extends each contract function’s CFG to encompass
intra-/inter-contract calls. This is achieved by adding new
edges for each SSA node if it is a call site. One edge is
added from the call site SSA node to the first SSA node
of the called function. Additional edges are added from each
terminating SSA node, e.g., a return statement, in the called
function back to the calling call site SSA node. Similarly,
the non-SSA CFG is extended with the intra-/inter-contract
function call edges. The resulting CFG covering all functions
of a contract is referred to as an extended CFG. For the rest
of the paper, we will refer to an extended CFG as a CFG.

2) CFG efficient path profiling: In order to enable efficient
tracing of contracts’ execution paths at run-time, EtherProv in-
struments the (extended) CFG using a path profiling approach
inspired by Ball et al. [18]. The need for efficient path profiling
stems from the significant overhead typically incurred by
instrumentation, which can be unacceptable in the Ethereum
environment where contract execution consumes gas of a
limited quantity. Ball’s algorithm gives an efficient approach to
accurately determine the frequency of a control flow path. The
algorithm operates on a directed acyclic graph (DAG) with a
single main entry node and a main exit node. A path is tracked
in the DAG by updating a register along the path execution
through instrumentation in selected edges. To achieve this,

the algorithm enumerates and uniquely encodes each possible
path. As a specific path is executed, the instrumented edges
accumulate the path encoding in a register. The traversal of the
maximum spanning tree in a reverse direction is manifested
with accumulation of negative numbers.

To apply this algorithm in the context of smart contracts,
several deficiencies need to be addressed.

First, a path in our context may span multiple con-
tract interactions. To address this, EtherProv uses a
PathAccumulator contract containing a single uint256
storage variable, which serves as the “global” path accu-
mulator register (accumulator for short) and functions to
manipulate it.

Second, each contract instruction consumes some amount
of gas, a measurement unit used to calculate the amount of
funds to be paid for the operation. Ball’s algorithm requires
to produce a path encoding per iteration, which is expensive
in Ethereum context. In order to reduce gas consumption,
EtherProv emits the path using the low gas consuming emit
instruction, which writes the accumulated value to a transac-
tion’s event. When a path is emitted, the accumulator is reset
to 0, which refunds gas. Further, EtherProv reduces multiple
log writes in a loop by compressing repetitive paths encoding.

Third, a Solidity contract may have multiple entry point
functions. These functions’ identifiers are either external,
which can only be called from outside the contract, or public
functions that are not called from any contract. A contract
may also have multiple exit points in the form of statements
that terminate an entry function (e.g., return statements, loop
breaks, uncaught throw statements). Since Ball’s algorithm
is designed to work on a DAG, we convert the CFG to
a DAG by connecting the single DAG’s entry node to the
CFG’s nodes that represent the first statement of each entry
function. The DAG’s exit node is connected to each CFG
node that represents an entry function’s terminating statement.
Further, each back-edge (e.g., resulting from while loops,
recursive function calls) is replaced by two additional edges:
one edge pointing from the DAG’s entry node to the back-
edge’s destination node and one edge pointing from the back-
edge’s source to the DAG’s exit node. Fig. 3a shows an
example CFG and its corresponding DAG in Fig. 3b. The
corresponding encoding of each DAG path is shown in Fig. 3c.
Each path, which may be comprised of multiple edges, is
encoded as a single value, resulting in a path compression.
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In order to calculate a path encoding during run-time, the
generated DAG is instrumented with an accumulator. Each
instrumented edge adds a positive or negative value along the
taken execution path. At the end of each path execution, the
accumulator contains the path’s encoding emitted (logged) in
the order it was encountered, which correlates to the order of
the contract’s execution flow. The instrumented DAG edges
are then copied to the corresponding CFG edges to form an
instrumented CFG (see Fig. 3d).

Fourth, an instrumented CFG may contain loops. Paths
without loops are encoded as a single value. Paths containing
at least one loop are encoded using multiple values. A back
edge in the instrumented CFG causes the current accumulated
path encoding to be emitted, and the accumulator to be reset,
in order to accumulate a new path encoding from that node.
There are 4 path types: I - a path not containing a loop, II -
a path starting at the beginning of the entry node and leading
to the first loop, III - a path after a loop leading to another
loop, and IV - a path after the last loop leading to the exit
node. Fig. 4 shows the 4 path types, which are extracted from
the instrumented CFG example shown in Fig. 3d.

Fig. 4a shows a type I path not containing a loop. The
accumulator is incremented from 0 to -2 and back to 0 at the
path’s end, where it is emitted before node D, as the path
encoding 0. Fig. 4b shows a type II path entering a loop for
the first time. The accumulator is incremented from 0 to -2 to
1 at node C (−2 + 3), where it is emitted before node B as
path encoding 1. The accumulator is then re-initialized to 0 for
the accumulation of the next path’s part, which can be another
loop iteration, leading to a different loop, or leading to the exit
node. Fig. 4c shows a type III path, which iterates through a
loop. The accumulator is incremented from 0 (after it was re-
initialized in the type II path) to 3 at node C (0 + 3), and is
emitted before node B, as path encoding 3. The accumulator
is then re-initialized to 0 for the accumulation of the next path.
Fig. 4d shows a type IV path, which leads from the last loop
iteration to the exit node. The accumulator is incremented from
0 to 2 at node D (0 + 2), and is emitted as path encoding 2.

When no loop is executed, a single path encoding is emitted.

When a loop is executed, a path encoding is emitted for each
iteration. To efficiently emit a loop iteration encoding (type
III path) at run-time, EtherProv counts the number of loop
iterations that were encountered and emits a single type III
path encoding along with its count. For example, for a path
not containing loops such as A-B-D, the emitted encoding is
0. For a path containing loops such as A-B-C-B-C-B-C-B-D,
the encoding is 1 (for A-B-C), 3 (for B-C), 3 (for B-C), 2
(for B-D). The 2 loop iterations (B-C-B-C) are accumulated
and emitted as the encoding for B-C along its count. The final
compressed path will be emitted as (1), (3:2), (2). The mapping
of each encoded path to its instrumented CFG related edges
is stored in the provenance database as a Datalog fact.

3) Instrumenting Solidity source code: The instrumented
CFG provides efficient and accurate profiling of CFG paths.
To facilitate provenance collection during the contract’s exe-
cution, we translate each of the CFG’s edge instrumentations
to their corresponding Solidity statements.

Since each CFG node represents a Solidity statement with
a known location, EtherProv heuristically determines whether
instrumentation should be injected after the source statement
or before the destination statement. When mandated by the
instrumentation, additional code is injected. For example, an
if statement without an else clause, may have an instrumented
edge corresponding to the false branch, in this case an else
clause is injected with the instrumented code.

Additional dynamic execution data is extracted with further
Solidity code instrumentation, which includes a getter function
for each of the contract’s public/private storage state variables.
The modified Solidity source code is then compiled to EVM
bytecode and deployed to the Ethereum blockchain.

The accumulator that holds path encoding is instrumented
through the use of a PathAccumulator contract, that is
created beforehand. Its address is injected to each contract’s
constructor in the original Solidity source code, in addition to
code that saves the PathAccumulator contract in an internal
contract storage state.

4) Dynamic data extraction: EtherProv enables the extrac-
tion of an execution flow, consisting of high-level Solidity code
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statements by instrumenting only the contract’s bytecode. The
contract’s Solidity code is instrumented to emit an encoded
execution flow path of a contract in real-time to the transaction
log. The encoded path can be then extracted from any historic
transaction containing an instrumented contract. The contract’s
exact execution flow is decoded from the encoded path by
querying the provenance database path mapping. The con-
tract’s executed path encoding is extracted from the blockchain
by querying the PathAccumulator contract’s events, which are
located in the executed transaction.

To enable more advanced analysis capabilities, EtherProv
additionally collects different types of dynamic provenance
data, i.e., the call function, its parameter names and types, and
the contract’s name are extracted from the contract Application
Binary Interface (ABI); block and transaction numbers are
extracted from the mined block; from address, to address,
called function name and parameter values are extracted from
the mined block’s transaction.

To enable an analysis, which requires a contract’s current
storage state values and current Ether balance, EtherProv
is run after each transaction to collect the current values,
which may change in the subsequent transactions. The cur-
rent contract storage variable values are extracted from the
contract’s instrumented getters, and the current Ether balances
are extracted from the deployed contract. To save computation
and space, EtherProv queries the static analysis data from the
data provenance database to: (1) decode the fully executed path
from the extracted encoding, and (2) to extrapolate only the
storage states that were read from or written into, according
to the decoded executed path.

B. Security analysis

To enable security analysis and debugging, Datalog rules are
issued against EtherProv’s provenance database. The prove-
nance database is itself comprised of an extensional database
(fact tables) and intensional database (derived by rules).

The fact tables are comprised of static and dynamic analysis
related tables that are populated in the corresponding phases.
Static analysis related tables include information on contracts,
their functions and parameters, CFG nodes in SSA/non-SSA
form, variables throughout contracts and their functions, paths
and their related state access details, etc. Dynamic analysis
related tables include information on contract to address
mapping, contract call and its parameters, extracted path and
its related read/written state parameters.

The intensional database comprises the security and debug-
ging analysis rules, which use the extensional database (table
facts). Section IV contains examples of rules enabling the
security and debugging analysis.

C. Tracking & Mitigation

Since a deployed Ethereum contract is immutable, address-
ing unhandled security issues or bugs is challenging. EtherProv
tracks the executed contract’s path in real-time analyzing its
executed path, hence, knowing its outcome before the trans-
action commits. The collected provenance data, e.g., current
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Fig. 5: EtherProv tracking & mitigation overview

executed path’s input and output storage state parameters, local
and global variables, function parameters, etc., are used to
identify and collect auxiliary data to help inform a mitigation
action in real-time. Such mitigation can modify the current
execution flow, e.g., revert the current transaction or call
additional internal/external functions, if the transaction’s path
is determined to be suspicious or malicious.

The related paths corresponding to the known properties of
a security or debugging issue can be retrieved from the prove-
nance database, and consequently stored in the blockchain’s
state, such as a dictionary/mapping, to be queried by the
mitigation component in real-time. Fig. 5 shows the tracking
and mitigation deployment steps.

IV. SECURITY EVALUATION

A. Implementation

EtherProv was implemented using Python language with
Ganache [28] as an Ethereum blockchain for the deployment
and execution of smart contracts. Slither [9] was used as a
third-party Solidity source code static analysis tool and Souffle
[29] as the Datalog query engine to run user-defined analysis
queries against the EtherProv’s provenance database.

B. Detecting known smart contract vulnerabilities

Many vulnerabilities were discovered in smart contracts. In
this work, we review 3 of them and show how EtherProv’s
capabilities help to reason about them.

1) Liquid ether: Ethereum contracts have a capability of
sending and receiving Ether. The bugs related to this category
permanently lock funds. One of the vulnerabilities that fall in
this category is Parity Wallet bug [30]. In 2017, the removal
of a library from the Ethereum blockchain, which was used
to exclusively send Ether to other contracts, by a referencing
contract, caused an entrapment of $160M worth of Ether [30].

EtherProv verifies this security issue does not occur by
checking if a contract can send Ether by either (1) suicide/self
destruct function, or (2) a call function with a positive number.
Listing 1 shows EtherProv’s corresponding Datalog rules.

1liquid_ether_compliance(node_id) :-
node_with_liquefiable_function_calls(node_id).

2liquid_ether_compliance(node_id) :-
node_with_call_value_not_0(node_id).

3liquid_ether_compliance(node_id) :-
node_with_call_value_dependent_on_sender(node_id).

4
5node_with_liquefiable_function_calls(node_id) :-
6 non_contract_function_call(node_id, "suicide(address)").
7node_with_liquefiable_function_calls(node_id) :-
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8 non_contract_function_call(node_id,
9 "selfdestruct(address)").

10
11node_with_call_value_not_0(node_id) :-
12 node(node_id,call_value),
13 node_variable(call_value,name,"uint256","True"),
14 name != "0".
15
16node_with_call_value_dependent_on_sender(node_id) :-
17 node(node_id,call_value),
18 node_variable(call_value,_,"uint256","False"),
19 variable_may_depend_on(call_value,"Client#msg.value").

Listing 1: Verifying liquid ether compliance (EtherProv
Datalog rules)

2) Re-entrancy: While re-entrancy can occur in many
forms, it typically requires a contract to ‘call’ another contract
or external function multiple times before its previous invo-
cations were finalized, i.e., “re-enter” a function. Re-entrancy
vulnerabilities can occur across multiple functions and multi-
ple contracts. This can cause severe damages, including fully
draining funds from vulnerable contracts.

An infamous example of re-entrancy bug happened in
2016, the vulnerable DAO contract was exploited, resulting
in the stealing of $60M worth of Ether [31]. The contract
included a function call, which sent Ether to the recipient.
The function determined the amount to be sent by inspecting
a storage variable, which was updated with the remaining
amount information after the function call. The attacker re-
invoked the function multiple times, i.e., sending ether, before
its dependent storage variable could be updated.

EtherProv verifies this security issue does not oc-
cur by checking that there is no write to a storage
value after any call instruction. Listing 2 shows Ether-
Prov’s Datalog rules. Rows 1-5 contain the main rule
no_writes_after_calls_violation. It is true if the
contract (1) contains a call-function, and (2) if any of its
following instructions are writes to a storage variable.
no_writes_after_calls_violation is true when

the node node_id is a call-function (identified in
the schema as "LowLevelCall"), and is followed
by a node followed_by_node_id that contains an
lvalue storage variable (lvalue_node_variable_id in
nodes_with_storage_writes).

1no_writes_after_calls_violation(node_id,
followed_by_node_id, lvalue_node_variable_id) :-

2 node(node_id,"LowLevelCall"),
3 node_may_be_followed_by(node_id,followed_by_node_id),
4 nodes_with_storage_writes(followed_by_node_id,

lvalue_node_variable_id).
5
6nodes_with_storage_writes(node_id,
7 lvalue_node_variable_id) :-
8 node_operation_with_l_value(node_id,

lvalue_node_variable_id),
9 node(node_id,"Assignment"),

10 node_variable(lvalue_node_variable_id,"NULL","True").
11nodes_with_storage_writes(node_id,
12 lvalue_node_variable_id) :-
13 node_operation_with_l_value(node_id,

lvalue_node_variable_id),
14 node(node_id,"Assignment"),
15 node_variable(lvalue_node_variable_id,points_to,_),

16 points_to != "NULL",
17 node_variable(points_to,"NULL","True").

Listing 2: Verifying no writes after calls compliance
(EtherProv Datalog rules)

3) Restricted writes: Ethereum contracts can be accessed
publicly, hence ensuring that only authorised users can modify
the contract is essential. Failing to ensure this can enable
unrestricted users to change the contract’s behaviour and, in
some cases, steal its Ether. Such vulnerability was exploited
in 2017 when an attacker was able to update the contract’s
owner to his own address, resulting in a theft of $30M [32].

EtherProv detects this security issue by checking if a
contract either (1) contains a path, which is not a result of a
branch, that enables to change a state by any user (independent
of sender), or (2) contains at least one path that is a result
of a branch, where the branching condition is independent
of the sender and leads to a storage write. Listing 3 shows
EtherProv’s Datalog rules.

1restricted_writes_violation(batch_id, root_node_id) :-
2 root_path_yes_branches_with_write_independent_of_sender(

batch_id, root_node_id, _, _).
3
4restricted_writes_violation(batch_id, root_node_id) :-
5 !root_of_path_with_branches_dependent_of_sender(batch_id,

root_node_id, _, _),
6 root_path_yes_branches_with_write_independent_of_sender(

batch_id, root_node_id, _).

Listing 3: restricted writes violation (EtherProv Datalog
rules)

4) Detecting violations across contracts: The existing static
analysis tools can analyze only single contracts. Yet, some se-
curity issues span over multiple interacting contracts. Listing 4
provides an example of a No writes after calls vulnerability,
which spans multiple contracts. The Client contract (lines 1-
13) uses the LockManager contract (lines 14-19). The Client’s
function transferFundsOnce receives an address to send
100 Ether to. If the lock is set to false (line 5), the
code continues to send 100 Ether to the dest_address
address (line 8) and sets the lock to true (line 10). Since
the lock remains locked, future calls to the function do not
send Ether. An attacker can drain Ether from this contract if
he is the first caller to the transferFundsOnce function
and the provided dest_address is an address of a contract
with a payable fallback function, which contains a call to
the transferFundsOnce function with its own address.
When the function is first invoked, the lock’s state is false,
and the Ether is sent to the attacker’s contract (line 10),
where the fallback function is invoked, which in turn calls the
transferFundsOnce. Since the lock’s state is not changed
yet, an additional 100 Ether are sent to the attacker’s contract
with the repeated invocation of the fallback function.

We executed the code shown in Listing 4 in Slither [9].
Slither was not able to detect this vulnerability, while Ether-
Prov’s analysis that spans multiple contracts, was able to detect
it.

1contract Client {
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2 LockManager _lm = LockManager();
3 uint _balance = 1000000;
4 function transferFundsOnce(address dest_address) {
5 if (!_lm.isLocked()) {
6 if (_balance > 100) {
7 _balance = _balance - 100;
8 dest_address.call.value(100)();
9 }

10 _lm.lock();
11 }
12 }
13}
14contract LockManager {
15 bool _locked = false;
16 constructor() public {}
17 function isLocked() returns (bool) {return _locked;}
18 function lock() {_lock = true;}
19}

Listing 4: Verifying no writes after calls across multiple
contracts compliance

C. Analyzing new security threats in deployed contracts

Scenario: Bank’s operations are managed by the Bank
contract, while each user’s bank account’s operations are
managed by the Client contract. Both are created and deployed
to the blockchain. The user’s Client contract is used to
send/receive funds to/from other Client contracts.

When a user wants to send funds to a designated Client
contract, he issues the request to his own Client contract with
the amount and address of the designated Client contract’s
address. The user’s Client contract queries the Bank contract
for the fee, sends it to the Bank contract, and sends the funds
to the designated Client contract. This process is implemented
in the Client contract’s _sendAmount function (Listing 5).

1function _sendAmount(uint amount, Client toClient) {
2 uint fee = _bank.getCurrentFeeContractAPI(_balance,

_accountType);
3 uint newBalance = _balance - amount - fee;
4 if (newBalance >= 0) {
5 toClient.addAmountContractAPI(amount);
6 _bank.depositFeeContractAPI(fee);
7 _balance = newBalance;
8 }
9}

Listing 5: Solidity Client contract’s internal sendAmount
function

Security concern 1: The bank has created 2 Client
contracts: client1 and client2 for user1 and user2, respectively.
Both users should have a “preferred” account type. User1
deposits 2000 credits into his Client1 contract, and then issues
a request to its Client1 contract to transfer 100 funds to the
Client2 contract. As a result, User1 sees that the fee deducted
from his Client contract’s balance is larger than it should be.

Security concern 1 analysis: EtherProv provides suffi-
cient provenance data to dynamically examine data flow across
these deployed contracts. The full analysis encompasses sev-
eral queries, for brevity we only focus on verification of bal-
ance before and after the contract call. Listing 6 provides the
EtherProv’s query that extracts the value of all state changes
resulting from contract call ("9f0efee0..."), which in-
clude current value = 1884 and prev value = 2000. From

row path_id edge_id from_node_id to_node_id type expression

1 6 252 Client#sendAmount… Client#sendAmount EXPR sendAmount(amount,toClientAddress)

2 6 231 Client#sendAmount Client#_sendAmount EXPR _sendAmount(amount,toClient)

3 6 236 Client#_sendAmount Bank#getCurrentFee... NEW fee = _bank.getCurrentFee…

4 6 199 Bank#getCurrentFee... Bank#getCurrentFee... NEW sendFee = 0

5 6 200 Bank#getCurrentFee... Bank#getCurrentFee... NEW underMinBalanceFee = 0

6 6 201 Bank#getCurrentFee... Bank#getCurrentFee... NEW isPreferred = keccak256(bytes)(ab…

7 6 202 Bank#getCurrentFee... Bank#getCurrentFee... IF isPreferred

8 6 203 Bank#getCurrentFee... Bank#getCurrentFee... EXPR sendFee = _premiumAccSendFee

9 6 204 Bank#getCurrentFee... Bank#getCurrentFee... IF balance < _premiumAccMinBalance

10 6 205 Bank#getCurrentFee... Bank#getCurrentFee... EXPR underMinBalanceFee = _premiumAccUnd…

Fig. 6: Sampled results of decoded path from EtherProv query

this the fee can be calculated as 2000 − 1884 − 100 = 16,
which is different from the Bank contract’s fee related to the
“preferred” account.

1contract_call_changed_states(state_id, current_value,
prev_value) :-

2 contract_call_written_states(_, "9f0efee0...", state_id,
current_value, prev_written_state_id),

3 contract_call_written_states(prev_written_state_id, _, _,
prev_value, _).

Listing 6: Contract call changed states (EtherProv query)

To understand the difference, the contract execution flow
provenance of the contract call involving the deployed Client
and Bank contracts should be analyzed (Listing 7).

1decoded_path(path_id, edge_id, from_node_id, to_node_id,
2type, expression) :-
3 dynamic_path("9f0efee0...", path_id, _, _ ),
4 static_path(path_id, edge_id),
5 static_edge(edge_id, from_node_id, to_node_id),
6 static_node(from_node_id, _, type, expression).

Listing 7: Decoded path (EtherProv query)

A sample of the query results are shown in Fig. 6. Rows 7-
8 show that the branch regarding the “premium” account was
taken instead of the branch regarding the “preferred” account.
The analyst continues to query the Client’s accountType state
value and discovers it was entered with a typo as the “prefered”
account type.

Security concern 2: The Client contract contains a
bug in _sendAmount (Listing 5 row 3). The statement
uint newBalance = _balance - amount - fee;
contains an assignment to a variable of type uint . A negative
number assignment to a uint results in an integer underflow,
which consequently may result in a very large number. For
example, a user sends funds to a Client where the sum of
the fee and the amount are larger than the balance. Following
the transaction, the user will obtain a large balance amount.
Consequently, all transactions that involve this large balance
will contribute to the magnitude of the issue.

Security concern 2 analysis: This integer underflow
becomes obvious when querying specific paths, e.g., paths
that contain a call to _sendAmount with focus on states
of type uint that are known to be strictly decreasing (e.g.,
balance variable when sending funds). If the states’ values
are increasing between subsequent transactions, an integer
underflow is detected.

EtherProv enables to detect tainted data by following the
flow of tainted values, i.e., when a contract call operates on
tainted values, its output storage states are also considered
tainted. In the integer underflow example, the first occurrence
of the (tainted) large balance value can be used to query all
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Contracts count Avg gas overhead Avg gas overhead std
1652 18.90% 0.378

TABLE I: Instrumented contracts statistics

contract calls that used either this value directly or other values
tainted by this value (Listing 8 where "8093c811..." is
contract state id).

1tainted_state_ids(batch_id, tainted_state_id) :-
2tainted_state_ids("8093c811...").
3
4tainted_state_ids(new_tainted_state_id) :-
5 tainted_state_ids(known_tainted_state_id),
6 state_parameter_read(contract_call_id, _,

known_tainted_state_id),
7 state_parameter_written(_, contract_call_id, _, _,

new_tainted_state_id).

Listing 8: Extracting tainted state ids (EtherProv query)

The recursive query retrieves all contract calls that read a
tainted contract state. For each such contract call, the written
state values are also considered tainted and are added to the
“known tainted states”. The query continues recursively until
no new tainted states are added.

D. Mitigating security threats in deployed contracts

Fixing an unhandled security issue or bug in a deployed
contract is challenging, as a deployed contract is immutable.
EtherProv enables mitigation of such issues. Listing 9 shows
an example of handling an issue by reverting the specified
paths. The Listing shows partial PathAccumulator code
related to emitting the accumulated executed encoded path in
run-time (called from instrumentation). PathAccumulator
uses a _revert_paths dictionary to store all paths
that should be reverted in run-time before completing the
transaction. Lines 6-8 show the function used by the
PathAccumulator owner to update the dictionary with
those predefined paths. Upon transaction execution, before
emitting the current executed path, if _revert_paths con-
tains the path (line 2), the transaction is reverted.

1function flush_path_data() {
2 if (_revert_paths[_current_path.path_id] != 0) revert();
3 emit path(_current_path.path_id, _current_path.count);
4 _current_path.is_init = 0;
5}
6function update_reverted_path_id(uint[] calldata path_ids,

uint size) {
7 for (uint i=0; i<size; i++) _revert_paths[path_ids[i]]=1;
8}

Listing 9: PathAccumulator partial Solidity code

We evaluated EtherProv’s mitigation capability on
the original “King of the Ether Throne” contract,
KingOfTheEtherThrone.sol [33]. The contract was
instrumented and deployed. We then issued a query
that extracted all paths encoding containing a call to the
claimThrone function, which were then inserted to the
_revert_paths dictionary. The subsequent contract calls
were reverted successfully.

V. PERFORMANCE EVALUATION

In this section we evaluate the instrumented contracts’
execution gas overhead. The contracts’ Solidity source code

Fig. 7: Instrumented contracts’ average overhead CDF
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Fig. 8: Instrumented contracts

were retrieved from etherscan.io [34] and the evaluation was
performed on the Ganache platform. For each contract, we
identify its external functions and public functions that are
not called by any contract. Each such function is executed
with its instrumented and uninstrumented versions for which
we calculate the respective gas overhead. When executing an
instrumented contract’s function we extract from the emitted
executed path the number of executed instructions, which is
the number of executed instructions in the uninstrumented
contract. We calculate a contract’s execution gas overhead
as

∑
f∈Contract(f

gas
instrumented−fgas

uninstrumented)∑
f∈Contract(f

gas
uninstrumented)

, where f is a
contract’s executed function. The contract’s corresponding
number of instructions (instructions count) are calculated as
the average of all executed uninsturmented contract functions’
instructions number. As the results in Table I show, the average
contract gas overhead is 18.9%. In comparison, the study by
Wang et al. [35] reported an average of 28.27% run-time
overhead. Fig. 7 shows that 90% of the contracts (vertical
red line) incur a maximum gas overhead of 23%.

The instrumentation of a contract containing loops uses
a path compression logic before emitting a loop encoding.
Our instrumentation of contracts without loops is lightweight
and hence incurs considerably lower gas cost. Fig. 8 helps to
better understand the varying instrumented gas overheads. We
manually analyze the three corner cases in the graph:
• High instructions count and low instrumented con-
tract gas overhead (top left of the graph). We an-
alyzed the top 5 contracts with the highest ratio of

instructions count
instrumented contracts gas overhead . Most of the executed
functions’ paths in the extracted uninstrumented contracts
contained a high number of uninstrumented instructions
alongside low instrumentation due to lack of branching or
loops, which helps explain the low gas overhead. Specifically,
some functions’ paths contained 50-60 instructions (e.g., write
hard coded lists into a map storage). Since storage write is
the most expensive instruction anyways, its contribution to the
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instrumentation gas overhead is negligible.
• Low instructions count and low instrumented contract gas
overhead (bottom left of the graph). We examined the top
5 contracts with the lowest instrumented contracts gas over-
head and the lowest instruction count. Most of the executed
functions’ paths in the extracted uninstrumented contracts
contained relatively few instructions and low instrumentation
(due to lack of branching or loops), which helps explain the
low instrumentation gas overhead. Specifically, some function
paths contained 5-13 write to storage instructions (most gas
consuming), which helps explain the considerably lower gas
overhead.
• Lower instructions count and high instrumented con-
tract gas overhead (bottom right of the graph). We an-
alyzed the top 5 contracts with the highest ratio of
instrumented contracts gas overhead

instructions count . Most of the executed
functions’ paths contained relatively few instructions and high
instrumentation due to loops and branching, which helps
explain the high instrumentation gas overhead. Specifically,
some executed function paths contained 1-2 storage or mem-
ory reads/writes or an emit instruction (all of which consume
little gas) and 1-2 branches and a loop, which contribute
to higher instrumentation and thus explain the considerably
higher instrumentation gas overhead.

We examined some of the instrumented contracts in between
the corner cases and found that the ratio of instrumentation
to the cost and frequency of uninstrumented instructions
correlates with the logic discussed in the corner cases, i.e,
more/less costly executed instructions with corresponding
less/more branching or loops result in low/high gas overhead
respectively. The results show that instrumentation is the most
efficient on contracts without loops. However, contracts with
loops incur a gas overhead relative to the loops’ frequency.

VI. CONCLUSION

The rising adoption of blockchain technologies has resulted
in companies employing blockchain to manage various valu-
able assets. Many blockchain platforms support automated
execution of smart contract code, and it is very important
that smart contracts are free from security vulnerabilities.
With the proliferation of such smart contracts, the number
of incidents related to smart contract vulnerabilities is also
increasing. Existing approaches to analyze smart contract
security properties are usually resource consuming and are
not suitable for practical deployment. Also, these approaches
offer no mitigation strategies with already deployed contracts.
To address the limitations of existing approaches, we pre-
sented EtherProv, which tracks smart contract execution flow
provenance by leveraging both static and dynamic analysis
of Solidity source code. Our system enables the tracing of
an execution flow spanning multiple interacting deployed
contracts with an average instrumentation overhead of 18.9%.
We also developed an efficient path profiling approach for
the extraction of a contract’s executed path. Moreover, Ether-
Prov is capable of mitigating unaddressed security threats
detected within already deployed contracts. Our experimental

evaluation demonstrates that EtherProv is able to accurately
detect several security vulnerabilities, including liquid ether,
re-entrancy and restricted writes, and analyze transaction-
based security threats in deployed contracts.
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