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Code authorship attribution is the process of identifying the author of a given code. With increasing numbers
of malware and advanced mutation techniques, the authors of malware are creating a large number of mal-
ware variants. To better deal with this problem, methods for examining the authorship of malicious code are
necessary. Code authorship attribution techniques can thus be utilized to identify and categorize the authors
of malware. This information can help predict the types of tools and techniques that the author of a specific
malware uses, as well as the manner in which the malware spreads and evolves. In this article, we present
the first comprehensive review of research on code authorship attribution. The article summarizes various
methods of authorship attribution and highlights challenges in the field.
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1 INTRODUCTION

Since the development of the computer virus, the security community has been interested in ways
to expose the identity of an adversary. In the past, this was often possible owing to the relative sim-
plicity of malicious software. In some cases, a manual analysis of code even revealed personal and
identifiable information embedded by the authors themselves [51]. However, with the growing use
of complex obfuscation techniques and the availability of malware code generators, which allow
malware developers to create variants of malware at unprecedented rates, this process has become
significantly more challenging and requires advanced methodologies. The relevant methods often
found in authorship attribution research are referred to as stylometry. Authorship attribution in
the literary domain offers a wide spectrum of techniques to identify an author of a document based
on a set of textual features that quantify writing style [83]. The assumption underlying attribution
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is the existence of a distinctive writing style, unique to an author and easily distinguishable from
others. A quantified representation of this style can be viewed as a fingerprint.

Dating back to the 19th century and the first analysis of the sonnets of Shakespeare, authorship
attribution techniques have leveraged developments in machine learning and natural language
processing (NLP) for electronic texts (e.g., email messages, blog posts, and Web pages), software,
and source and binary codes. Beyond the traditional focus on the analysis of literary works, au-
thorship attribution techniques have been applied to the software field, such as in code plagiarism
detection [84], biometric research [40], source code authorship attribution [36, 64], and malware
analysis [23]. Code authorship attribution can help in cybercrime investigations because it can
attribute attacks to particular adversaries. In this context, attribution often pursues the following
objectives:

—Authorship identification—to find the most likely author of a specific work from a set of
candidate authors. Authorship identification can help identify adversaries behind zero-day
attacks or variants in the wild. For instance, WannaCry (ransomware) and its new vari-
ant, WannaMine (cryptominer) are built on EternalBlue, an exploit developed by the U.S.
National Security Agency (NSA) [7].

—Authorship clustering—to group the authors based on stylistic similarities from a set of can-
didates. This can help identify groups with which the author has collaborated, and in some
cases identify different adversary groups targeting similar organizations.

—Authorship evolution—to analyze the evolution of the author’s programming skills, prefer-
ences, and writing style over a period of time. Authorship evolution can help researchers
understand ever-changing trends in the underground economy: the way adversary groups
evolve their attack tools, techniques, and tactics.

—Authorship profiling—to analyze details of an author’s profile, such as gender, nationality,
and ethnicity, based on stylistic features extracted from the given work. Such profiling can
help law enforcement agencies understand the global landscape of individual adversaries
and adversary groups around the world.

—Authorship verification—to determine the author of a given sample code. An authorship
verification problem may occur if an adversary modifies a victim’s code to add some illegal
functionality and the victim is blamed for it. In this case, the task is to identify the author
of the modified code.

The uniqueness of code attribution lies in the characteristics of a fingerprint and its ability to
quantify an author’s programming style. One of the main difficulties in the field is in compiling a
fingerprint that efficiently and accurately characterizes the author’s style. In the traditional setting,
authorship attribution relies heavily on information that allows deep linguistic analysis of works
(e.g., richness of vocabulary, tense of verbs, semantic analysis of sentences). In software, emphasis
is often placed on surface characteristics, such as variable naming, program layout, and spacing,
that reflect the textual nature of the source code. Such an approach is dictated by the nature of
the field that, in many cases, fails to provide the original source code for software (e.g., malware
analysis and commercial software theft), leaving researchers with the binary representation. As
such, binary code retains very few of the surface characteristics of the original, and the focus of
research in recent years has shifted toward the analysis of stylistic features of program binaries
[23, 74, 76].

This shift was also driven by different objectives of code attribution. In contrast to assigning
authorship to one of the candidate authors whose identities are known and well described, the goal
of code attribution is much broader, and it often seeks insight into anonymous authors throughout
the entire development and usage cycle. Similar to that of literary works that reflect an author’s
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stylistic habits, the analysis of software may unveil the digital identity of a programmer reflected
through variables and structures, the programming language, development tools, settings, and
how and for what these tools are being used.

In this article, we survey research advances in code authorship attribution. Figure 1 shows a
timeline of publications related to authorship attribution. We trace the historical development of
the field since the first appearance of code attribution research. Although a number of general
surveys discuss the attribution of literary works and offer excellent reviews of the classifications
of linguistic style [50, 54, 83], there is a lack of research on the attribution of the source and binary
code, which we aim to cover here. The contribution of this work is threefold:

—We offer a comprehensive review of studies focusing on code authorship attribution. This
is the first effort of its kind to the best of our knowledge.

—We review traditional stylometric features and their representation in light of source and
binary code attribution. We also discuss code attribution models and methods emphasizing
challenges in the field.

—We present a comparative summary of research in the field of code authorship attribution.

The remainder of the article is organized as follows. Section 2 presents the history of the evolu-
tion of code authorship, and Section 3 describes the overall process of code authorship attribution,
starting from sources of input, feature extraction, feature representation, and separate embeddings
that are then applied to attribution models and methods. Section 4 discusses research challenges,
and we offer the conclusions of our review in Section 5.

2 CODE AUTHORSHIP ATTRIBUTION FROM A HISTORICAL PERSPECTIVE

2.1 Origin

Although traditional research on authorship attribution dates back to the 19th century, the first
studies on code attribution appeared only in the late 1970s [30, 70]. Initial efforts revolved around
the automatic evaluation of algorithms in programming assignments to understand algorithmic
complexity and, consequently, measure the student’s capability [65].

Past attempts on authorship attribution are rooted in the theory of software science developed
by Halstead [45] in the early 1970s. The theory states that only four basic metrics are needed to re-
flect the implementation and structure of any algorithm. These four metrics represent the “internal
quality” of an algorithm and are unlikely to be the same among programs written by independent
authors. These metrics became known as Halstead’s metrics or software science metrics, and are
listed in Table 1.

The theory of software science has been reviewed by many researchers [2, 12, 24, 35, 46, 47,
79]. Most have confirmed its benefits while offering improvements. Bulut et al. [12] proposed
the counting algorithm for FORTRAN programs to reduce the time required to measure software
science metrics. Albrecht and Gaffney [2] demonstrated the relation between the size of a pro-
gramming system, its development efforts, and Halstead’s software science metrics. Fitzsimmons
and Love [35] concluded that the metrics yield higher accuracy than other measurements when
applied to a sufficiently large collection of programs.

Despite the significant support for Halstead’s theory, several objections were raised by some
researchers [47, 79]. According to these critics, in many cases, the empirical results of the theory
failed to support its own postulates; hence, any practical use of the theory in its current state is
questionable.

Despite disagreements, the theory set a precedent in software assessment and triggered research
focusing on software similarity detection. Initially, the focus of these efforts was to find similarities
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Table 1. The Basic Elements of Software

Science Theory [45]

Metric Definition
n1 Number of unique operators
n2 Number of unique operands
N1 Total occurrences of operators
N2 Total occurrences of operands

between programming assignments submitted by students, and to detect the original and the pla-
giarized documents. This research, known as plagiarism detection, established the ground for code
authorship attribution and later spawned research along several other directions, such as software
cloning and software evolution.

Plagiarism detection is often used interchangeably with code authorship attribution. Author-
ship attribution focuses on an author and is thus concerned with the writing style reflected in
code. In case of plagiarism detection, however, the author of the document is known, and the aim
is to identify unoriginal content extracted from another known author. In other words, plagiarism
detection is an example of a closed-world problem, when authors are enumerated and their styles
are well known, with the objective of correctly choosing one of the candidates, whereas author-
ship attribution goes beyond this problem and aims to identify the original author’s style when
the author’s identity is not necessarily known and readily available. Therefore, the goals of the
two are different. However, both fields are based on the same underlying principle of feature ex-
traction to detect similarities between programs written by an author. Thus, techniques employed
for authorship attribution and plagiarism detection often overlap. To study authorship attribution,
however, it is important to review research in plagiarism detection as well.

2.2 Plagiarism Detection

A well-known study in plagiarism detection was conducted by Ottenstein [70]. He employed the
software science metrics to find similarities between students’ assignments written in FORTRAN.
He noted that cosmetic transformations, such as renaming variables and reordering independent
statements, that are often used to bypass plagiarism detection tools are not reflected in software
science metrics. Thus, he argued, software science metrics alone are not sufficient for the detection
of plagiarism in FORTRAN source code.

Following this study, several researchers aimed to redress the situation. Common methods used
to disguise plagiarism, such as variable renaming, do not modify the internal structure of a pro-
gram. Based on this, Donaldson et al. [30] developed a system for similarity detection based on
the structure of a program focusing on FORTRAN, COBOL, and BASIC programming languages.
He expanded software science metrics to include other structural features, such as the number of
loops, assignment statements, and the number of calls to subprograms. Although this approach
was found to be accurate only in detecting simple plagiarism (e.g., format modification and re-
naming), it introduced structural analysis for exposing program similarity.

Subsequently, Berghel and Sallach [9] performed a comparative analysis of 15 common complex-
ity metrics to detect similarities between FORTRAN programs. The features included Halstead’s
metrics and other surface characteristics of programs, such as the total number of lines of code and
number of integer variables. Using the results of a large experiment involving 700 programs, the
authors concluded that Halstead’s metric system is ineffective because it identifies non-existent
similarities while missing obvious resemblances between programs. The study confirmed earlier
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results showing that the components of Halstead’s metrics have no unique practical value. Despite
such criticisms of Halstead’s metrics, researchers continued to use them for analysis [42, 65].

Each study at that time tried to develop larger sets of features than past work. In most cases, fea-
tures were selected in an ad hoc fashion, and there was no theoretical basis for their effectiveness.
Over time, it became clear that attribute-based features (e.g., lines of code and the frequency of
integer variables) are only effective when simplistic plagiarism techniques are used, such as com-
ment alteration, identifier modification, and statement reordering. Yet, the use of a wide spectrum
of methods for disguising plagiarism was becoming common. Instead of limiting the analysis to
the identification of trivial disguises, research efforts shifted to the detection of complex modifica-
tions. These modifications required exposing features of the underlying logic, structure, and flow
of the code.

Several plagiarism detection systems based on program structure were introduced. Of them
were the structure metric–based system by Faidhi and Robinson [33], Plague [89], MOSS (Mea-
sure of Software Similarity) [78], Sim [43], YAP3 [90], and GPLAG [66]. All of these studies high-
lighted the effectiveness of structure-based metrics (e.g., choice of data structure or control struc-
ture) over simple attribute counting systems. Yet, a study conducted by Verco and Wise [86]
concluded that structure metric systems perform equally well, and only in some cases are bet-
ter than attribute-counting systems. Although this study compared only the attribute-counting
system–based method “Accuse” [42] with the structure metric–based method proposed by Faidhi
and Robinson [33], no follow-up study to disprove this result was conducted.

Over the years, it became clear that the basic foundation of software science metrics cannot be
scientifically supported. What operators or operands should be counted, and how, was left to each
researcher. As a result, many studies started implementing programming language–dependent
features and exploring features characterizing the structure and syntax of a language. The most
popular software system of this nature is JPlag [72]. Research by Ji et al. [52] added another level of
abstraction to language-dependent features. They extracted token sequences from Java bytecode
and evaluated the similarity of Java programs using adaptive local alignment. The important result
was that source codes and bytecodes are equally good at discovering program similarities.

Over time, interest in Halstead’s metrics and plagiarism detection diminished. As software theft
became a more prominent topic in the industry, the research community turned its attention to
binary code analysis. In essence, the detection of software theft and plagiarism are very similar,
with one caveat—the availability of source code. Traditionally, plagiarism studies experimented
with program source code; however, in the case of software theft, we typically deal only with the
binary version of software that does not retain most of the author’s characteristics. Beyond con-
firming whether a given program is a copy of another, software theft detection cannot determine
if both programs have been created by the same author. This work focuses on determining the
authorship of code.

2.3 Evolution of Authorship Attribution

Along the lines of plagiarism detection, researchers started investigating the relation between the
authors and the programs written by them. Similarly to plagiarism research, this topic started with
the analysis of source code and evolved into binary code analysis.

Oman and Cook [69] were pioneers in the study of programming style for authorship attribution.
They focused on typographical or layout characteristics that can produce a wide range of style
markers. Their proposed method employed a statistical analysis of these markers and showed
highly accurate results. This study failed to consider that programs can be easily modified by code
formatters.
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A new era of authorship attribution started with software forensics, a term coined by Spafford
and Weeber [82] in their seminal 1993 work. The authors claimed that every programmer has a
unique style. In investigating a security breach, they connected the manual writing recognition
technique used in law enforcement to identify people with the task of the analysis of residual code
in a security incident to identify an adversary. They suggested that attack traces can be found
in software of any form, including source files, object files, executable code, and shell scripts.
Although Spafford and Weeber did not provide any statistical evidence to support their theory,
the work became a springboard for research on adversarial author attribution. Considering that
the presence of source code in the adversarial domain is rare, their work sparked considerable
interest in binary code attribution.

A 1994 study by Krsul and Spafford [57] argued that authorship attribution in computer software
is a much more difficult task than in the literary domain. Software developers reuse code, work in
teams, format programs by code formatters, and use third-party libraries and tools that introduce
new stylistic features. Despite their critical view of code attribution, Krsul and Spafford highlighted
the effectiveness of authorship analysis to enhance real-time intrusion detection.

In 1996, Sallis et al. [77] revisited software forensics to discuss the challenges of using software
attribution methods and techniques available in natural language processing. Noting the variabil-
ity of methods, they emphasized the core problem—that none of the prevalent approaches alone
can solve the problem. However, methods from NLP in combination with conventional software
metrics can be a good fit for the software attribution process.

Yet, the main challenge of authorship attribution for source and binary codes at the time was the
ultimate set of features that can be used for analysis. In 2004, Ding and Samadzadeh [29] focused
on the metric selection procedure for the attribution of Java programs. They used two ways of
selecting the most relevant features: by manual selection using one-way ANOVA and automatic
selection by stepwise discriminant analysis. Canonical discriminant analysis was used to evaluate
the effectiveness of selected metrics. The study reported a classification accuracy of 85.8% using
canonical variates and, the authors claimed, produced a set of features more diverse than in any
previous study [58, 77].

A different approach to identifying an effective combination of features useful for authorship
attribution was proposed by Lange and Mancoridis [60]. A set of normalized histograms illustrat-
ing the distribution of code features was used to identify the style of a developer. The authors
employed genetic algorithms to test different combinations of 17 features. Unfortunately, no com-
bination was optimal and required recalibration for every new dataset.

Still, all of the preceding studies focused on meaningful and often human-readable features. In
2006, a team of researchers explored the benefits of raw N-gram features for binary code attri-
bution. This novel approach that involved generating the most frequent byte-level N-grams for
author profiles was proposed by Frantzeskou et al. [38, 39]. The similarity between known author
profiles and an unidentified code sample guides the attribution decision process. This method,
known as the source code author profile (SCAP) approach, had previously been evaluated for nat-
ural language authorship attribution by Kešelj et al. [53]. The main benefit of using the approach in
software is its independence of programming language, computational simplicity, and resistance
to compilation. Considering that many previous studies had examined the characteristics of the
layout of source code (e.g., comments, brackets) typically eliminated in the compilation process,
using raw N-grams is beneficial in preserving potentially useful author characteristics.

Owing to these advantages, N-gram analysis was applied in many subsequent studies [13, 31,
63]. Layton et al. [63] evaluated the unsupervised SCAP method for the analysis of phishing scams.
Burrows and Tahaghoghi [13] explored the N-gram approach to attribution based on keywords
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and operators. Dubba and Pujari [31] examined the effectiveness of N-grams for computer virus
detection and Burrows et al. [15] confirmed the effectiveness of byte-level N-gram analysis in the
SCAP method for the general source code attribution task.

The problem with N-gram–based approaches is the selection of n. Typically, the best value of
n depends on experimental data. Considering that most studies rely on datasets generated in a
controlled environment, the optimal value of n varies depending on the application and settings.
For example, a study by Kothari et al. [55] concluded that character-level 4-grams analysis provides
satisfactory accuracy because it can capture an author’s style better than any other style-based
feature.

Moving away from the analysis of syntactic similarity, research has focused on identifying the
author of source code through the analysis of code logic. Eventually, researchers began analyzing
features that represent the underlying semantics and dynamic behavior of the program [10, 17, 21,
49].

2.4 State of the Art in Authorship Attribution

Code authorship attribution faces many research challenges that are similar to those in the domain
of malware analysis. Issues such as the unavailability of source code, reuse of existing code, and
prevalence of obfuscation are common to both fields. As pointed out in the theoretical study by
Walenstein and Lakhotia [87], similar challenges might also lead to similar solutions. Considering
that malware analysis is typically performed at the binary level, attribution might overcome many
difficulties by also leveraging binary analysis.

The study by Rosenblum et al. [74] is one of the first that attempted authorship attribution
of binary code. By converting binary code into a different representation, the work explored N-
grams, idioms (recurring code constructs in all programs), control flow graph (CFG), and other
representations to capture the internal structure of the software.

The idea for this work came from previous research on the provenance of the tool chain. A tool
chain refers to a set of tools employed in the software development process. Earlier, the same au-
thors had investigated the compiler provenance—for instance, characterizing details of program
compilers and their effect on program binaries. They found it feasible to identify the original com-
piler used to generate a particular binary code [76]. Follow-up studies [73, 75] further investigated
tool chain provenance with the aim of attributing program binaries to the production tool chain.
Once again, they confirmed that it is possible to distinguish between complete tool chains used to
generate a program. In a similar vein, Chouchane et al. [23] showed the feasibility of attributing
malware to the metamorphic engine or kit used to generate it. The results obtained from these
studies prove that the ideas of authorship attribution can be applied to discover different levels of
the origin of the relevant software.

A critical facet of any attribution study is the availability of reliable datasets. The existence of
representative, properly verified, and labeled datasets of the authors’ source/binary code samples
is a major challenge in the attribution domain. This typically drives researchers to use customized
and manually selected sets that are often too small, or imbalanced, and contain few samples for
some authors and significantly more for others. For example, Lange and Mancoridis [60] exper-
imented with a dataset containing code by 20 authors with only 3 samples per author, whereas
Rosenblum et al. [74] employed a dataset with code by almost 200 authors with programs ranging
from 4 to 16 per author. Similarly, the size of code samples used for analysis varies drastically.
Bandara and Wijayarathna [8] collected code samples ranging in size from 28 lines to more than
15,000 lines of code, whereas a number of studies have experimented with code samples sometimes
containing only a single line [14, 26].
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The lack of sufficient data creates biased or even inaccurate results. This was illustrated in a
study conducted by Chatzicharalampous et al. [20], which employed an imbalanced set of source
code samples. The results decreased in dependability and consistency as the level of imbalance
in authors’ samples increased. Noting the difficulties with a large number of complete programs,
Dauber et al. [26] studied the feasibility of authorship attribution of segmented code samples.

Although attribution is typically performed on authors of benign software and their data, a few
studies examined the challenges of attributing malware. Layton and Azab [62] investigated the
authorship of the Zeus botnet source code and concluded that most of the code had been written
by one author, whereas some modules that represented additional functionality appeared to have
been written by others.

Attributing a binary file is difficult because it undergoes various changes by means of some
compilation or obfuscation techniques. Obfuscation transforms a binary into a form that is dif-
ficult to analyze or reverse engineer while preserving its original behavior. With the increasing
popularity of obfuscation in both legitimate and malware applications, the task of attribution is
becoming more challenging. Various compilation and obfuscation techniques modify the original
code, rendering the characteristic markers of an author’s style even more elusive.

Several studies investigated features and methods resilient to obfuscation. Alrabaee et al. [3] pro-
posed the Onion approach to improve the accuracy of binary authorship attribution. By removing
and filtering unnecessary data and irrelevant code, they applied syntactic and semantic attribution
to yield promising results. Following this intuition, Caliscan-Islam et al. [18] proved that certain
syntactic features extracted from decompiled binaries survive various compilation techniques. Yet,
in another study, Alrabaee et al. [5] showed that the features most robust to obfuscation are the
ones derived from the data and control flow.

Thus far, work on code authorship attribution has been based on the assumption that the code
is developed by a single author, which is not the case in modern software development, where a
group of authors generally works on it. In such cases, authorship attribution is a challenge because
the underlying software does not represent the style of any one author. Understanding whether
an unknown binary has been developed by one or more authors comes before attribution can
be applied. An option in this scenario is to study code chunks instead of complete samples [26].
Meng [68] proposed a method to identify the multiple authors of a binary by analyzing each basic
block. This technique can discriminate among the authors of each basic block with an accuracy
of 52%.

As the field of authorship attribution evolves, more complex features are being introduced based
on application programming interface (API) calls and CFGs, giving us stronger results and more
flexibility in analysis. However, the main difficulty (i.e., the unavailability of source code) persists.
Tools such as code formatters, beautifiers, and obfuscators are prevalent and only help authors
hide their identities. In such situations, binary code becomes the primary target of analysis.

3 PROCEDURE FOR AUTHORSHIP ATTRIBUTION

Despite the variability of studies in the field, a typical workflow of code authorship attribution is
the same. As Figure 2 shows, the process of attribution starts with the extraction of features at
the source or binary code level and their translation into a suitable form. Depending on how the
features should be processed further, a proper attribution model is chosen. Finally, based on the
ultimate goal, a method of attribution is used along with machine learning techniques.

3.1 Features

In the history of authorship attribution research, the employed features have always played a crit-
ical role. Over the years, the features have evolved significantly from simple counting metrics in
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Fig. 2. Conceptual schema of the authorship attribution process.

software science to semantic metrics such as CFGs. As in the literary domain, features in code
attribution can be classified into three broad categories: lexical, syntactic, and semantic [83]. Un-
like the literary domain, however, where only plain text is available, software consists of many
more components, including resources (e.g., image, audio files), metadata, and libraries. Therefore,
application-specific information and runtime behavior can complement the attribution process.
We thus also introduce two new categories of features: behavioral and application dependent.

3.1.1 Lexical Features. The basic form of a feature that can be extracted from the source or
binary file is the lexical feature. It is a simple sequence of tokens or characters, or even bytes,
and can be counted in many ways, such as term frequency (TF), term frequency-inverse docu-
ment frequency (TF-IDF), and ratio and average. While extracting lexical features, the semantic
characteristics of tokens are not considered. Lexical features include the length of lines, number of
lines in a program, number of operands, number of variables, word frequencies, token frequencies,
character N-gram, function or method names, and identifiers. Stylistic and layout features such as
the use of indentation, number of spaces, variable naming, and number of blank lines also fall into
this category.

Lexical features work on the idea that authors are prone to choose the same or similar words to
name functions, variables, or other resources in all of their programs. The main advantage of lex-
ical features is that they are basic and simple. They are language independent; hence, techniques
used to extract such features can be easily applied to different programming languages and envi-
ronments. Lexical features can be obtained from source code and other forms of programs. Their
simplicity and ease of implementation has made them the focus of many research studies.

Regardless of their advantages, lexical features can be inadequate to the task of authorship
attribution. They heavily depend on the number of training samples available per author—for
example, with a greater number of samples, one can better determine the choice of preferred func-
tion names. Over the years, a wide variety of lexical features have been proposed; however, select-
ing the most relevant and contributory features is a challenge. Many stylistic and layout-related
features can be easily altered by code formatters, thus affecting the reliability of such features.
Moreover, proprietary software and malware writers can employ techniques such as variable re-
naming, addition/removal of redundant code, splitting sentences, transposing statements, string
obfuscation, and string encryption to evade attribution systems. Despite these challenges, lexical
features have continued attracting many researchers. Studies [13, 37–39] have used byte sequences
and produced good results.

3.1.2 Syntactic Features. Syntactic features characterize the external structural organization
of code. In contrast to lexical features, syntactic features work with the organization or use of
tokens. Syntactic features can also be counted in different ways, including TF, TF-IDF, average, and
percentage. Examples cover the numbers of functions, numbers of keywords, choice of data struc-
ture, use of special macros, use of language features, number of inputs, number of conditional/
assignment statements, choice of control structures, number of calls to functions, order of state-
ments, number of specific delimiters, average function size, and frequency of overloaded operators.

ACM Computing Surveys, Vol. 52, No. 1, Article 3. Publication date: February 2019.



Code Authorship Attribution: Methods and Challenges 3:11

The main goal of syntactic features is to exploit the idea that authors are comfortable staying
within formed habits that are hard to change and tend to use code routines unconsciously. For
example, some authors might prefer using the for loop over the while loop. Syntactic features are
reliable and can produce stronger author profiles than those obtained using only lexical features
because they are more resistant to code formatting and obfuscation techniques, such as variable
renaming and string encryption.

However, syntactic features are language dependent. Therefore, a tool developed to extract and
analyze features for one programming language cannot be directly applied to another. Several
syntactic features have been proposed in various studies over the years, and selecting the best is a
challenge. Sophisticated proprietary software and malware authors can still mask their identities
by changing the structure of the programs, such as through function modification by changing
its type, return type, use of inline functions, reordering of methods, using different control struc-
tures (e.g., replacing a for loop with a while loop, or replacing case statements with if statements),
reducing the number of subprograms, addition of redundant code, and class merging [81]. The
use of advanced obfuscators can also affect the performance of these features. However, syntactic
features remain promising and can provide a lot of information about the author. Studies need to
explore the right combination of modification-resistant features that can withstand various obfus-
cation and code optimization techniques.

3.1.3 Semantic Features. Semantic features express the logical flow of the code and give mean-
ingful insight into its inner workings. Semantic features can be extracted irrespective of the syntax
and structure of the program; names of the function or variables; and other stylistic, layout-related,
or structural features. For example, a programming loop can be expressed in different syntactical
ways, such as with a for loop, do while, repeat until, and for each, but at the semantic level, they
all represent a loop.

The main goal of semantic features is to exploit the idea that authors tend to use the same logic
while creating programs. The programming style of the author for various programming languages
may differ; however, the analytical skills of the author reflected in the problem-solving approach
are difficult to change. Semantic features try to capture this aspect of the author’s programming
style. These features include various sophisticated, high-level features, such as the number of loops,
algorithms implemented, control flow analysis, dataflow analysis, and procedure-dependence
analysis. Semantic features are much more robust than the previous two categories of features
and are resistant to many semantics-preserving transformation techniques such as code optimiza-
tion, string obfuscation/encryption, data transformation [22], and various compilation techniques.

Despite the robustness and effectiveness of semantic features, their extraction is a difficult pro-
cess. The author’s logic across several programming languages may remain constant; however,
tools to extract this logical flow for every language require additional effort. For example, a tool to
extract the CFG in Java cannot be directly used for C programs. Proprietary software and malware
authors can still hide their identity by various techniques, such as addition of redundant code,
including API calls and additional functions, to modify the control flow [22, 81]. Advanced obfus-
cation techniques including control flow obfuscation and control flow flattening can significantly
degrade the performance of these features [61]. Regardless of these challenges and difficulties, se-
mantic features can generate strong author profiles. More research is needed to make them more
resistant to code obfuscation. Choi et al. [22] suggested techniques to tackle issues like control flow
modification and the addition of unnecessary API calls. Semantic features for authorship attribu-
tion have not been explored fully by researchers. More studies focusing on exploiting the author’s
semantic style are needed.
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3.1.4 Behavioral Features. Unlike in literary authorship attribution analysis, source code can be
transformed into binary form that can then be executed for further analysis. While executing the
program as a black box, there exists the possibility for additional code to be loaded dynamically
“on-the-fly” from external sources, previously encrypted functions to be decrypted or deobfus-
cated, or a data structure (e.g., string literal containing shellcode) to be executed as code.

Behavioral features can be obtained from dynamic information generated by executing a pro-
gram binary. Runtime features include system calls, files accessed, network connections, created
mutex, visited URLs, and dynamic values generated. These runtime behavioral features cannot
be captured simply by analyzing code statically. Moreover, they play an important role when the
source code is not available.

The main goal of behavioral features is to reveal the hidden functionality of the software that
might contribute to the attribution process. The major advantage of behavioral features is that
they are resilient to most techniques commonly used for software protection, even advanced ob-
fuscation (e.g., code flattening).

Although behavioral features can provide good results, incorporating them into the authorship
attribution system is challenging. Behavioral analysis techniques and tools differ depending on the
software being analyzed. Employing behavioral features across a large dataset can be problematic
because, to capture them, each binary has to be executed in a controlled environment, which is
time consuming and often requires special settings to trigger hidden functionality. Hayes and
Offutt [49] showed that system calls do not perform well if programs have few or no unique system
call. Proprietary software and malware authors can use more advanced techniques, such as tuning
the system for a virtual environment and active debuggers, to deceive analysis based on behavioral
features. Despite these challenges, behavioral features are promising and deserve further research
attention.

3.1.5 Application-Dependent Features. The preceding features are application independent, as
they can be extracted from any code given the availability of appropriate tools and techniques.
Application-dependent features are defined to better distinguish an author’s style in a given ap-
plication development realm.

These features are static application features that can be extracted from various application-
specific binary components, such as linked libraries, resources (e.g., images and sound files),
property files (e.g., plist files in case of iOS mobile applications), log files, and permissions files
(AndroidManifest.xml in the case of Android mobile applications). These features also contain
various items of metadata, such as the compiler version used to create the executable files and
packaging tools.

In contrast to behavioral features, these features can be extracted without executing the appli-
cation itself. Their main goal is to reveal the authors’ preferences with regard to the development
context, such as external resources, development tools, and libraries.

Application-dependent static features are unique, and their extraction is cost efficient. They can
play a crucial role in cases where the source code is not available and the extraction of behav-
ioral features is prohibitively expensive. Despite their potential, these features have received little
attention from the research community. Table 2 briefly summarizes the feature types along with
their advantages and disadvantages.

3.2 Representations

In the domain of traditional linguistics, sample text is viewed mainly as a plain sequence of
tokens, whereas software, either in the form of source code or binary, can be represented in many
different ways for the attribution process. Owing to the unique characteristic features of software,
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Table 2. Summary of Feature Types Based on Techniques Surveyed

Feature
Type Examples Advantages Disadvantages

Lexical Lines of code
Operands
Variables
Spaces
Word frequencies
Token frequencies
Character N-gram
Function names

Basic feature
Language independent
Extracted from source
code and byte code

Dependent on number of
training samples
Relevant feature selection is
a challenge
Easily evaded with code
formatters or obfuscation

Syntactic Average function size
Use of special macros
Choice of data structure
Choice of control structure
Input statements
Conditional statements
Assignment statements

Builds strong author
profiles
Robust against code
formatters and
obfuscation
Captures problem-solving
approach of author

Language dependent
Feature selection is a
challenge
Evaded by changing
structure of code

Semantic Loops
Dataflow analysis
Control flow analysis
Algorithms implemented
Procedure-dependent
analysis

Develops a strong author
profile
Robust against code/data
transformation
techniques
Language independent

Difficult to extract features
Evaded by advanced
identity-hiding techniques

Behavioral System calls
Files accessed
Created mutex
Visited URLs
Dynamic values
Network connections

Robust against software
protection and advanced
obfuscation
Useful when source code
is not available
Reveals hidden
functionality

Challenging to use
Dependent on size of data
Easily evaded by
anti-analysis techniques
Large numbers of false
positives and false negatives

Application-
dependent

Strings from:
—Log files
—Smali files
—Properties files
—Error message files

Cost efficient
Works even if source code
is not available
Augments author profile

Requires advanced tools to
extract features
Not obfuscation resilient

a variety of representations is possible. For example, source code can be viewed as a simple
sequence of tokens or a control flow in the form of a graph. Different representations can be
employed throughout the authorship attribution process to extract the features and represent the
extracted features in a form suitable for automated analysis. This section lists the most commonly
used representations in the code attribution domain derived from previous studies [3, 4, 74] and
the nature of the software used.

Tokens. The basic representation of a feature is the token. A token by itself represents a single
extracted feature. Lexical and syntactic features can be obtained by representing source/binary
code files in the form of tokens. For example, a token can be a word, character, symbols, function
names, keywords, operators, operands, and basic blocks. Specific tools are not required to extract
this representation, because it can be obtained by applying simple tokenization techniques on
source/binary code files. However, this feature does not capture the semantics of the code or any
context-specific information. It focuses only on plain tokens irrespective of their functions.
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Owing to its ease of implementation, it has been widely used by researchers, starting from the
first basic software science metrics of Halstead [45]. Researchers often use frequency or existence
to measure features represented in the form of tokens. Donaldson et al. [30] used the frequency of
token-based features, such as number of variables, subprograms, input statements, and conditional
statements. Oman and Cook [69] used Boolean measurement based on the existence of token-based
features, like blank lines, spacing, and comment format.

Strings. A sequence of tokens composes a string. Instead of analyzing tokens separately, they
can be combined as strings that can be processed further by applying different string analysis
techniques. Many lexical and syntactic features, such as keywords, operators, operands, and vari-
ables, can be combined together to form strings. However, certain features (e.g., number of blank
lines, spacing, and indentation) do not form meaningful strings. A string analysis of the tokens can
provide a better idea of the author’s writing style than tokens embedding some context-specific
information. Similarly to tokens, however, they cannot capture code semantics. String represen-
tation allows the leveraging of string analysis algorithms for code attribution. A few studies have
used this (e.g., JPlag [72]). Overall, however, string representation has not been used widely in
authorship attribution research.

N-grams. An N-gram is a sequence of n terms combined together to form a given token sequence.
N-grams have been used extensively for detecting software similarity and in authorship attribution
systems. The advantages of this representation are clear: N-grams preserve contextual information,
lend themselves easily to both source and binary code analysis, produce computationally simple
author profiles, and are program language independent. This representation is promising and has
been widely used by researchers [13, 37, 63, 78].

Although experiments have shown that the N-gram representation is reliable, some factors need
to be considered while incorporating it. Researchers generally select the size of the N-gram arbi-
trarily, because there is no proven method to determine the best choice of n. In practice, this typi-
cally leads to extensive experiments with various values of n on a given dataset to determine the
one that produces the desired results of attribution. In such cases, features extracted as N-grams
might produce biased results depending on the value of n. Thus, the validation of various sizes of
N-gram on different datasets is needed while designing the attribution system [37].

Idioms. An idiom is a short sequence of instructions with possible wild cards [76]. This represen-
tation reflects low-level details of code instructions and can be extracted from assembly language
code by disassembling the binary. Idioms represent instruction/statements unique to the particular
language and thus are used to express language-dependent syntactic features. This representation
has not been used widely by researchers; however, it can be explored for attribution on program-
ming languages separately.

Graphs. A graph is a collection of nodes representing basic blocks of a program connected with
directed edges. This representation is used to model the flow and structure of the program. Un-
like token-based representation, graph representation helps reveal the underlying semantics of
the program. Graphs can be used for attribution in different forms and can be constructed from
both the source and the binary code (e.g., a program dependence graph (PDG) [66], CFG [49],
system call dependence graph [88], and API call graphs [19, 22]). Typically, features represented
or extracted by using graph representation are obfuscation resilient. Indeed, avoiding certain sys-
tem calls while retaining overall functionality is difficult, but, still, the resulting features are more
reliable compared to other representations.

A more restricted form of the graph is a tree, an undirected acyclic graph that can be used to
represent the structure of the data. Trees can capture only the underlying structure and syntax
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of the program. Abstract syntax trees (ASTs) and parse trees are examples of this representation
[17, 25].

3.3 Embeddings

A single representation might not be enough to express the diverse nature of a software program.
In these situations, researchers leverage embeddings (i.e., combinations of different representa-
tions). Sets, collections of objects irrespective of their order, and vectors, and ordered lists with a
fixed number of objects, are common examples of embeddings.

Unlike all of the representations discussed earlier, sets and vectors cannot be directly extracted
from the source code or binary. Rather, they are used to combine features represented in any form.
A set can be a unique collection of N-grams, tokens, strings, and API calls. Vector representation is
often used to leverage the complementary nature of different types of features, such as combining
lexical and syntactic features [9, 30, 42, 70].

Examples of the discussed representations are given in Table 3.

3.4 Attribution Models

Once features have been extracted and represented in the desired format, the next step is to se-
lect the attribution model most suitable for the given context. Typical authorship attribution is a
multi-class single-label categorization task where a number of training samples of work by a fixed
number of known candidate authors are available. A classification model is trained based on this
dataset, where each class represents a candidate author. The model is then employed to classify
the unknown sample as one of the learned classes. Depending on whether the training samples are
treated cumulatively or separately, profile- or instance-based attribution models can be employed.

3.4.1 Profile-Based Models. A profile-based attribution model produces a single unique style
of representation per author. The author’s style is represented through a set of common charac-
teristics derived through the analysis of all available samples of the author’s work. Differences in
samples belonging to the same author are not considered. In this way, a unique author profile, also
known as author fingerprint or author signature, is generated. Typically, the author fingerprint is a
vector or a set of feature representations (e.g., N-grams, strings). However, other presentations are
also possible. For example, an author fingerprint comprising a histogram distribution of features
has been proposed [60, 80]. For every candidate author, the classifier first produces normalized
interpolated histograms illustrating the distribution of features. This set of an author’s histograms
is then compared to the histogram distribution of the unknown sample.

A profile-based approach, SCAP, proposed by Frantzeskou et al. [37], is one of the most com-
monly used. The SCAP approach generates a profile using the most frequent byte-level N-grams
extracted from the source code samples of an author. This language-independent method has
proved to be effective even with a limited number of training samples and the absence of com-
ments from the code.

3.4.2 Instance-Based Models. An instance-based attribution model produces separate styles of
representation per sample. Every composition belonging to the same author is considered an in-
dependent unit. This approach allows for the consideration of differences between samples of the
same author. The unknown sample whose authorship is to be determined is then compared to
every sample in the corpus. This approach has been found to be especially effective in cases when
some authors have limited numbers of samples [20]. Considering that finding a reliable dataset
for code attribution is challenging, many studies in this domain have employed this approach, in-
cluding one of the earliest attempts to analyze the programming style of an author by Oman and
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Table 3. Examples of Feature Representation

Raw features extracted from Android API calls
Landroid/app/Service;->onCreate,
Landroid/os/PowerManager;->newWakeLock,
Landroid/os/PowerManager$WakeLock; ->acquire,
Ljava/lang/Object;-><init>,
Landroid/os/Handler;->postDelayed

Representation Example

Landroid {4}

app {1}

Service {1}

Tokens onCreate {1}

os {3}

PoWerManager {2}

...

Landroid/app/Service;->onCreate,

Landroid/os/PowerManager;->newWakeLock,

Strings Landroid/os/PowerManager$WakeLock;->acquire,

Ljava/lang/Object;-><init>,

Landroid/os/Handler;->postDelayed

<>-Landroid

Landroid-app

app-Service

N-grams Service-OnCreate

OnCreate-<>

Landroid-os

os-PowerManager

PowerManager-newWakeLock

...

Landroid/*/* {4}

Ljava/*/* {1}

Idioms Landroid/app/* {1}

Landroid/os/* {3}

Ljava/lang/* {1}

Graphs
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Cook [69], where author clusters were analyzed by calculating the similarity between each pair of
training samples.

The most recent studies in the field [17, 18, 74] have also evaluated the performance of the
instance-based authorship attribution model on attribution tasks.

3.4.3 Selecting an Attribution Model. The main difference between profile- and instance-based
models is the way in which they handle samples for attribution tasks. A profile-based model is
a classification model of a generative nature that produces one cumulative representation of all
training samples by an author. It emphasizes the modeling of the distribution of the author class
and classifies by computing the likelihood of a new sample. However, an instance-based model is
a classification model of a discriminative nature that treats each sample related to an author as
a separate instance. It emphasizes learning the class boundaries without attempting to model the
entire underlying class density. To design an efficient authorship attribution system, it is important
to understand the performance of both models in different scenarios. When deciding on the best
approach for analysis, the following points should be considered:

—Author style: Profile- and instance-based models attempt to handle different kinds of author
styles. Considering that a profile-based model represents the stylistic features of each author
and does not consider differences between samples by the same author, it deals with the
generic style of each author and is thus more suitable for dealing with consistent styles (e.g.,
experienced programmers [49]). However, an instance-based model represents the stylistic
features of each training sample for each author, and the differences among the samples are
considered. It thus tackles the separate style of each sample by an author.

—Number of available samples: Profile-based models consider all training samples cumula-
tively. Hence, this approach is fairly insensitive for small datasets, whereas instance-based
models require a sufficient number of training samples of moderate size.

—Length of the profile: The length of the author profile (i.e, the number of most frequently
occurring features extracted from an author’s code) plays a crucial role in the profile-based
attribution model. Frantzeskou et al. [37] proposed selecting the L most common features
extracted from the source code, where L represents the size of the profile. However, this
can produce biased results as features are removed arbitrarily depending on the value of
L while creating the author profile. The study evaluated the performance of the system by
varying the profile length parameter L. Although it failed to provide the optimal value for
parameter L, the authors concluded that the accuracy of the profile-based model increases
with the size of the profile. Based on this observation, Burrows et al. [15], in a comparative
analysis, suggested using the maximum value of parameter L (i.e., by including all features
in the profile). A follow-up study by Tennyson and Mitropoulos [85] concluded that author
profiles generated by excluding features appearing less frequently provide better accuracy
than those generated by selecting the L most common features. In case of instance-based
models, the length of all training samples should be uniform, because all samples must be
adequately represented to produce reliable stylistic features.

— Imbalanced representation of authors: Ideally, all authors should be represented by similar
numbers of code samples. Considering that this is often impossible, the attribution model
should compensate for it. A systematic study conducted by Chatzicharalampous et al. [20]
showed that both attribution models are negatively affected by the imbalanced datasets.
Profile-based models suffer when the total size of all training samples for each author is
not uniform across authors. This is because the non-uniform distribution of total training
samples for each author can produce biased author profiles. Other factors, such as the num-
ber of training samples per author and the size of each sample, do not affect profile-based
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models. In case of instance-based models, as each sample plays a role in the classification,
the number and the size of samples per author need to be uniform for a balanced dataset.
In case of balanced or nearly balanced datasets, both models yield stable performance, al-
though the instance-based model provides better results because it considers differences
between samples for classification. In case of a moderately balanced dataset (i.e, a dataset
where half the authors have insufficient training samples), instance-based models still out-
perform profile-based models. Finally, for heavily imbalanced datasets, the performance of
the instance-based model degrades rapidly owing to insufficient training samples for each
author, whereas author profiles can still be created even if the number of training samples
for each author is small. Hence, the profile-based model is the best solution for imbalanced
datasets.

Profile- and instance-based methods are complementary in nature; therefore, in certain cases,
their combinations can be beneficial—for example, by training over instances, and then using the
results to create a profile from the average values of the extracted features.

3.5 Attribution Methods

Once the attribution model has been designed, the next step is to select a suitable method to com-
pare author profiles or samples to identify the author of an unknown sample. Depending on how
the comparison is performed, the methods of attribution can be categorized as follows.

3.5.1 Similarity-Based Methods. Similarity-based methods are the simplest and most common
and widely used methods for attribution tasks. They attempt to calculate pairwise similarity be-
tween unobserved code and all samples used for training or all author profiles in the training set
to make a final decision. The author with the highest similarity with an unknown sample is identi-
fied as its probable author. These methods can be used with profile- and instance-based attribution
models.

Many code attribution studies have used similarity-based methods of attribution. The exact
method for calculating similarity depends on the nature of the authorship task and the attri-
bution model. The most common examples of such methods include clustering techniques [63],
nearest-neighbor algorithms [60], distance-based algorithms [37, 53, 69], and ranked-based tech-
niques [80].

Frantzeskou et al. [37] compared the performance of two similarity measures: the relative dis-
tance measure based on comparing the normalized frequency of N-grams proposed by Kešelj
et al. [53], and the simplified profile intersection (SPI) measure based on the number of common
N-grams between an unseen code sample and the author profile. The study concluded that the SPI
measure is simpler and better than the relative distance measure for authorship attribution.

Burrows and Tahaghoghi [13] assessed the performance of attribution with five similarity mea-
sures: Okapi BM25, cosine, pivoted cosine, language modeling with Dirichlet smoothing, and a
custom similarity measure designed by them. They showed that 6-gram representation yields the
most accurate results, whereas Okapi BM25 is the most accurate similarity measure. With the
exception of the Dirichlet measure, other similarity measures performed with similar efficiency.

3.5.2 Vector Space Methods. One of the most efficient representations in code authorship at-
tribution is vector representation. Vector space methods consider each sample code as a vector in
a multivariate space. Feature vectors extracted from the sample codes can be applied to a variety
of machine learning algorithms, including support vector machines (SVMs), principal component
analysis, decision trees, neural networks, genetic algorithms, and classifier ensemble methods.
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These methods can usually handle noisy, high-dimensional, and sparse data, permitting expres-
sive representation for the codes. Instance-based attribution models use these methods.

Vector space methods have gained popularity in recent studies. The most common approach is to
represent metrics in the vector format followed by the use of different machine learning techniques
(e.g., discriminant analysis [29, 48, 49], SVM [68, 74], and random forest classification [17, 18]).

3.5.3 Probabilistic Methods. Probabilistic methods compute the probability that an unknown
sample belongs to a candidate author from a given set of authors. The author with the maximum
probability measure is identified as the probable author. These methods determine the probability
P (C |A) of code C belonging to candidate author A. They are mostly used with profile-based attri-
bution models owing to their probabilistic nature. However, we can use probabilistic techniques
as a similarity measure to calculate the similarity between unseen code and all training samples as
well. The probabilistic algorithms employed by researchers include the naive Bayes classifier [55]
and logistic regression [8]. In some cases, the SVM algorithm, which is generally used as a vec-
tor space method, can be transformed into a probabilistic classifier. A relevance vector machine
functionally identical to an SVM with a probabilistic sparse kernel model can be used for such
probabilistic classification.

3.5.4 Meta-Learning Methods. General-purpose classification algorithms might not always be
effective on the authorship attribution problem. In these situations, researchers have the option
of developing a custom algorithm designed for a particular task by modifying machine learning
techniques, such as deep learning, or creating an ensemble of several methods to improve accuracy.
Of these options, the ensemble approach has been used most often.

Krsul and Spafford [58] used a combination of discriminant and graphical analysis to discard
irrelevant features followed by classification using a neural network algorithm. Layton et al. [63]
relied on the calculation of similarity between documents based on the byte-level N-gram approach
followed by document partitioning using fuzzy c-means MST clustering (FMC). Rosenblum et al.
[74] leveraged the distance metric generated by the large-margin nearest-neighbors algorithm to
cluster unlabeled samples using the k-means algorithm.

Meta-learning methods are not common but have been used in both profile- and instance-based
models.

3.5.5 Selecting a Machine Learning Algorithm for Attribution. A classical problem in code au-
thorship attribution is to attribute an unknown sample to a known author based on a training
dataset of samples of known authorship. This classification is conducted while keeping key points
in mind, such as the objective of attribution, the author’s style, availability of a sufficient number
of known samples, and sample length. The two most important factors from a machine learning
perspective affecting the classification process are the (i) choice of appropriate features and (ii) se-
lection of an effective classification technique. In terms of feature selection (as discussed in Section
3.1), lexical, syntactic, and semantic features have been extensively used [3, 8, 13, 17, 18, 29, 32,
39, 48, 49, 55, 58, 60, 63, 68, 69, 74, 80, 91]. With regard to feature representation, researchers com-
monly use tokens [8, 13, 17, 18, 29, 48, 58, 60, 80], with a growing consensus on the use of N-grams
for consistent results [17, 39, 41, 55, 59, 63, 74, 91]. However, there is no common agreement among
researchers regarding the best machine learning classifier for code authorship attribution.

Prevalent studies have focused on testing the classification accuracy of separate machine learn-
ing methods, and rarely in comparison with other methods. This, together with the variation in
the experimental environment and the evaluation methodology, makes it challenging to draw any
conclusions about the performance of these methods. Only a few studies in the code authorship
attribution domain have attempted to compare the accuracy and efficiency of classifiers [6, 44, 55,
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92, 93]. Yet, none of the studies has performed a comparative analysis of classifiers with respect to
their suitability across attribution problems.

In general, there are two high-level ways to approach a classification problem in machine learn-
ing: supervised learning and unsupervised learning. In the context of code authorship attribution,
supervised learning relies on ground truth from known sources, such as the GitHub repository.
The collected samples are then used to learn a model (profile- or instance based) for each author’s
programming style. In unsupervised learning, the analysis is conducted without the ground truth.
In this method, the new code sample is analyzed to find subsets that appear to have been written
by the same author [63, 69, 74]. Unsupervised machine learning techniques, such as clustering,
work best in cases where only unlabeled data are available (e.g., malware author attribution). Un-
supervised machine learning has other benefits as well–it does not need training and performs
well even with a small and imbalanced dataset.

Most work surveyed in this article uses supervised learning methods. In this task, most profile-
based approaches use a nearest-neighbor classifier to compare an author’s profile to those of all
candidate authors based on a similarity measure [39, 60, 80]. A nearest-neighbor classifier is simple
to implement and is flexible in terms of choice of distance. Frantzeskou et al. [39] proposed a
dissimilarity measure that showed that the classifier performed well in cases where only a limited
number of very short samples for each author were available for training.

Lange and Mancoridis [60] also used the nearest-neighbor algorithm with a general distance
measure to rank a list of authors according to similarity of style. The authors used the entire
code at a time to train the classifier with the aim of reducing the number of comparisons that the
classifier needed to make. However, nearest neighbor did not yield the best performance when
large datasets with numerous features were employed, because it took longer to run. However,
Shevertalov et al. [80] focused on improving classification using metric discretization and per-
formed experiments using IB1 (a simple nearest-neighbor classifier) to achieve a moderate accu-
racy of 75% but with improved performance. In a similar way, data discretization optimization can
be applied to advanced classification algorithms to produce better results.

Other algorithms used in profile-based approaches are naive Bayes and logistic regression.
Kothari et al. [55] compared naive Bayes and voting feature intervals (VFI) classifiers. Similar to
the findings of Shevertalov et al. [80], they showed that the VFI classifier that partitions a metric
into intervals produces better classification results and requires relatively less time to classify au-
thors. Gull et al. [44] also performed a comparative analysis of naive Bayes, the decision tree (J48),
SVM, and k-nearest neighbors (KNN) on authorship attribution. Their results showed that naive
Bayes converges more quickly than other discriminative algorithms on a moderate-sized dataset.
Bandara and Wijayarathna [8] applied logistic regression. Being a binary classifier, it requires k

classifiers to train, where k is the number of authors in a given dataset. Hence, logistic regression
can be a good choice for closed-world problems with a limited number of authors.

However, instance-based approaches use SVM, discriminative analysis, random forests, decision
trees, and neural networks. Of these, the SVM classifier has the ability to effectively handle large
numbers of training samples [59, 68, 74, 91]. It can easily process hundreds and thousands of
features, thus allowing the use of all features from a code sample as input, instead of having to
carefully select specific features. Moreover, the training time and accuracy are better than those
of other methods. Another method of choice among researchers is discriminant analysis [29, 48,
58]. It is similar to regression analysis and works within a closed environment. In case of a limited
number of samples for each author, cross-validation is specified in discriminant analysis to obtain
a realistic estimation of performance [29, 48].

To date, only Elenbogen and Seliya [32] have utilized the C4.5 decision tree model to extract
data patterns in the form of rules to predict plagiarized student programming assignments. The
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random forest, which is an ensemble of decision trees, is gaining more popularity in code author-
ship attribution [16, 17, 41, 81]. It is useful in several scenarios, such as for simple classifications
(i.e., selecting the exact author), rank-based classifications when performing relaxed attribution
(i.e., with a reduced number of suspected authors), and when dealing with a code sample written
by multiple authors. The main objective in these scenarios is to identify the most likely author of a
code fragment. Further, once trained, it provides the best tradeoff between accuracy and processing
time, hence outperforming other models, including neural networks.

Alsulami et al. [6] and Yang et al. [92] applied different forms of neural networks to authorship
attribution and compared their models to classical machine learning approaches. The evaluation
illustrated that with a moderate problem size (number of authors), adequate training data, reason-
able training time, repeated experiments to adjust the control parameters, neural network models
can achieve comparable accuracy with a tolerable overhead. Attributing code authorship by using
neural networks and deep learning is an emergent area that requires more research and optimiza-
tion in classification.

3.5.6 Dataset Selection. Reliability (i.e., consistency of experiments in a study) depends heav-
ily on the employed experimental practices and evaluation data. The high quality of a dataset
that properly represents practical programming practices not only shows a method’s ability to
attribute code but also provides insight into its potential effectiveness in the deployed operating
environment.

With a lack of benchmark datasets in the late 1990s, researchers resorted to using archives of
programming assignments by students [15, 39, 58]. A large amount of time was spent only on
systematizing and categorizing the data. Sharing these data was challenging owing to privacy
concerns, and generally required anonymization, which removed valuable information (i.e., com-
ments) commonly used for authorship attribution.

Hence, the availability of publicly assessable data is crucial. Tennyson and Mitropoulos [85] ex-
plored the use of programs written by textbook authors for authorship attribution. Although the
samples were freely available, their authorship was unclear because there was no evidence that
a single code had been authored by one person and all samples were written by the same pro-
grammer. The detection of multiple authors having written a single block of code is a challenging
problem [17, 68], because such researchers typically use datasets with single authors or discard
samples from multiple authors.

With the growing popularity of open source repositories, researchers started leveraging this
data. Frantzeskou et al. [39] downloaded source code samples from freshmeat.net.1 Lange and
Mancoridis [60] and Sheverlatov et al. [80] used free software projects hosted on SourceForge.2

Bandara and Wijayarathna [8] considered planet-source-code.com3 as a data source.
Although these data repositories still do not offer a clear distinction among programs written

by multiple authors, they offer a rich and diverse pool of source and binary code.
Most recent attribution studies [6, 18, 81] have used programs developed during the Google

Code Jam (GCJ),4 an annual international coding competition hosted by Google. Given a set of
problems, the contestants need to provide solutions in a restricted time. The availability of statis-
tical information, such as popularity of programming language, contestants’ skill levels, and their
nationalities make data from the GCJ useful for authorship attribution and authorship profiling.

1http://freshmeat.sourceforge.net/.
2https://sourceforge.net/.
3https://www.planet-source-code.com/.
4https://code.google.com/codejam/.
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Although there are many benefits to using these data, this practice has been extensively criticized
mostly owing to its artificial setup [27].

With a limited number of samples per author and limited variety of programs of some languages
(e.g., JavaScript), the GCJ is not a comprehensive source of data for attribution.

The authors [27, 91, 92] who approached the authorship attribution problem “in the wild” mainly
used repositories found on GitHub.5 Github is an online collaboration and sharing platform for
programmers. As of June 2018, it reported nearly 30 million users6 and 57 million repositories [34]
(including 34 million public repositories7). Similar to other repositories, GitHub does not offer
reliable facilities to differentiate code written by multiple authors and has significant noise in the
data (e.g., junk code).

Furthermore, some authors used multiple sources to construct their datasets. For examples,
Burrows et al. [15] used student data from school assignments and open source programs for
evaluation.

For datasets of binary code, researchers have used compiled versions of programs from similar
data sources, such as GCJ and GitHub [3, 5, 18, 68, 74]. Thus, challenges applicable to the selection
of a dataset of source codes applies directly to that of binary code. Some authors [41, 59] focusing
on authorship attribution in Android apps have faced challenges unique to Android application
development. One such challenge is dealing with APKs signed by open or publicly available certifi-
cates. These certificates can be used by anyone, thus calling into question the known authorship of
the APK. Further, generating an obfuscated dataset requires compiling Android application source
code and employing obfuscation tools, which, in some cases, is not successful for reasons such as
incompatible versions of the Android plugin, SDK version collision, and improper environment
parameters set in the configuration files, resulting in some APK source code files being discarded.
For Android malware datasets, both authors collected malicious Android APKs from the Koodous
system,8 which is an open source, collaborative, Web-based Android malware analysis platform,
and verified the malicious nature of those APKs by VirusTotal.9

An overview of studies on authorship along with their classifications is shown in Table 4.

4 CHALLENGES

The presented spectrum of representations, features, and models for code authorship attribution
clearly shows a diversity of solutions in code authorship attribution. However, over the years,
these studies have also revealed a number of challenges that the area faces:

—Closed-world problem: In the software domain, attribution is a closed-world problem
that has only one solution leading to one answer. The solution is restricted to known soft-
ware authors whose codes are analyzed for authorship. For example, if profiles are built for
n number of authors, the solution leads to one of them only. The solution is not generic
and, thus, cannot be valid for other authors whose profiles do not exist in the system. One
solution to this challenge is the use of unsupervised learning methods for attribution [63].
Adopting approaches like clustering allows new clusters to form whenever a new author’s
program sample is encountered by the system. Such an approach does not require training
and performs well even with a small and incomplete dataset.

5https://github.com/.
6https://github.com/search?q=type:user&type=Users.
7https://github.com/search?q=is:public.
8https://koodous.com/.
9https://www.virustotal.com/.
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—Lack of source code: This challenge is more common in the malware domain. A majority
of research, both academic and industrial, on malware defense and malware analysis has
focused on binary because malware samples are distributed in binary form. Very rarely do
researchers and malware analysts have access to source code. The lack of the availability of
malware source code has resulted in a poor understanding of the evolution and properties
of malware, such as origin and authorship. Therefore, malware code authorship attribution
is a challenging task where only binary code is available, as the compilation process strips
the code of certain surface characteristics specific to the malware author [74]. However, a
recent study focused on features that survive the compilation process [18]. There are some
syntactical features in source code that can be recovered by decompiling the binary. These
features are robust against basic obfuscation and optimization techniques. More research is
required to extract such features directly from the compiled binaries.

—Use of automatic code generation tools: Numerous tools are available online for auto-
matically generating code that the authors otherwise have to write themselves. Code from
such tools does not provide any useful information regarding a particular author because
code thus generated cannot capture the exact programming style of that author. Moreover,
in case of malware, authors extensively use numerous code generators and toolkits to pro-
duce a large number of malware variants. One solution to answer this challenge is to utilize
software clone-detection techniques to first filter out duplicate code from known code gen-
eration tools. The clone-detection technique should be able to filter fragments that differ in
variable names, parameters, and rearranged statements.

—Code obfuscation: Code obfuscation has the ability to lower the accuracy of traditional
code authorship attribution methods. The authors of benign software commonly utilize
code obfuscation for legal purposes, i.e., software protection, while making use of various
obfuscation tools to make their code willfully ambiguous and harder to understand. Various
obfuscation techniques like renaming, string encryption, control flow obfuscation, and code
morphing can be applied to hide identity. One of the best ways to extract features from
an obfuscated code is to first deobfuscate it—identify the obfuscation technique applied
and remove the obfuscating patterns from code. Another way is to extract obfuscation-
resilient features. These features have not been fully explored by researchers. More work
is required to identify features resistant to various obfuscation techniques and tools. Such
features should be selected carefully; otherwise, this could result in more false positives.

—Tool dependence: Feature extraction is a crucial step in authorship attribution. The fea-
tures capture distinctive aspects of an author’s programming style. Authorship attribution
techniques are dependent on the accuracy of tool(s) for feature extraction and classifica-
tion. Tools can be used to generate call graphs from binaries, which can be then used to
extract specific features like API calls. Thus, the feature extraction process is dependent on
the accuracy and efficiency of a given tool. If the tool cannot return correct results, this
affects the overall accuracy of the authorship attribution technique. To address this prob-
lem, the accuracy of each dependent tool can be measured and compared before using it for
attribution.

—Code reuse: Reusing existing code, components, and third-party libraries is common prac-
tice among authors of both malware and legitimate software. Code reuse is intended to
save time and resources by taking advantage of assets already created. However, every new
malware is created at a faster pace than a new, legitimate software. The new malware is
created either by modifying existing malware with a few tweaks or reusing existing code
components. Code reuse techniques are also used to hide malicious program behavior and
author identity from analysis [28]. This eventually leads to false alarms in systems that
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aim to detect code or author characteristics. Experts believe that most novice programmers
make use of code reusability. To identify code reuse, clone detection techniques or common
code reused every time by an author can be extracted and profiled.

—Scarcity of datasets: Research in code authorship attribution suffers from a lack of
open-benchmark datasets and uncertain labels like misclassified or unattributed software.
Researchers have to manually collect software for specific authors and obfuscate them
to create a small dataset for testing. No published data are available for training and
testing authorship attribution models. Academic and industry researchers working in code
authorship attribution should publish their datasets for the research community.

—No prior knowledge: Another challenge that is more common with malware is that there
is no way to baseline the methods, tools and techniques that malware authors might utilize
to write their code. While the benign software authors are obligated to follow quality
code writing guidelines and utilize standard tools and methods, this is not the case with
malware authors. Purely unknown malware are rare and attributing them is a challenge.
Since the majority of unknown malware are variants of existing malware, the common
functionality derived could be baselined.

—Collaborative environment: Akin to legitimate software development, the underground
economy works in groups, and it is possible that the same malicious code is written by
multiple authors. In this case, it is not easy to classify the author. Rather, attributing code
to a particular group of authors is more feasible. Studying the segmented pieces of a code
sample instead of the entire sample is another approach to solve such a problem [68].

—Evolving author’s programming style: The author’s programming style keeps evolving
over time. This evolution comes from the level of expertise and use of different program-
ming languages. With more experience in programming, the programmers writing style
develops naturally. Many programming tools also impose naming conventions, parameter
passing, and commenting styles [58]. All these factors influence the author’s program writ-
ing style, rendering it varied. One feasible solution is to collect and analyze the latest piece
of work from the author or employ a self-learning feature in the system to learn the evolving
programming style of the author.

The above questions remain open for code authorship attribution. From our perspective, the
most important issues in code authorship attribution are a lack of source code and obfuscation.
An analysis of source code is easy, and gives more details on the style of writing, which leads
to better fingerprinting, whereas extracting author fingerprinting details through binary analysis
is more resource intensive. The analysis becomes more difficult when obfuscation techniques are
applied on the code. These obfuscation techniques are used to hide the identity of the author and,
thus, affect the accuracy of solutions to code authorship attribution. Another important concern is
a lack of acknowledged benchmark datasets. This is the main obstacle to the development of new
methods and for the comparison with existing methods in malware authorship attribution. Apart
from these, other important research questions to address are the types of information or features
to be extracted to clearly identify the author of malware, the number of code samples sufficient
to build an author profile, the requisite size of unseen code to predict its author, the definition of
noise (like reuse or similar code) in the dataset, dealing with noisy samples, the extent of training
needed, and the accepted confidence level for accuracy.

5 CONCLUSION

Code authorship attribution is necessary to identify the authorship of a given software code. It has
practical implications for the detection of software theft, digital forensics, and malware analysis.
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In this review paper, various code attribution features, their representations, and the models
used to analyze them are presented. This is the first ever attempt to provide a comprehensive
review of this topic. Although plagiarism research is historically related to authorship attribution
research and shares in some methods, the goals are different. Code authorship attribution has
evolved from a basic software science theory to more complex methods based on API calls and
dependency graphs. Prevalent studies extract software metrics based on requirements, datasets,
and programming environments. However, extracting software metrics is not easy as the source
code is not always available. Moreover, code formatters and obfuscators are used to hide author
identity. Thus, binary code analysis plays an important role. Most research has focused on
identifying well-known authors but more work is required to identify unknown authors.

A comparative summary of existing work is presented that highlights the main features and
contributions of research in the area. This article also discussed challenges or open questions in
the area of code authorship attribution in general, and in the malware domain. The survey iden-
tified issues inherent to code authorship attribution and revealed the need for more research in
authorship attribution for malware.

There are no “silver bullet” solutions yet for authorship attribution analysis of malware. How-
ever, many researchers have proposed multiple solutions at different levels of abstraction. More
research methods focusing on the binary level need to be explored.

APPENDIX

A COMPARATIVE ANALYSIS

In Table 5, we provide a comparative analysis of the surveyed techniques on the basis of the ex-
tracted features and the contribution made by each to code authorship attribution.

Table 5. Summary of Reviewed Research

Author Year Features Contribution

Software Measurement

Halstead [45] 1972 Software science metric:
—Number of unique operators
—Number of unique operands
—Total number of occurrences of

operators
—Total number of occurrences of

operands

First to propose the measurable properties of
software and the relations between them

Bulut and
Halstead [11]

1973 Software science metric First to propose the counting algorithm to
count the software metric for FORTRAN
programs

Halstead [46] 1975 Software science metric Experimental validation of software science

McCabe [67] 1976 Number of independent control path
segments

First to propose a metric to measure the com-
putational complexity of a program based on
its structure

Fitzsimmons
and Love [35]

1978 Software science metric Review of major studies related to software
science theory

Curtis et al. [24] 1979 Three software complexity measures Evaluated performance of three metrics:
Software science, McCabe, and number of
statements to measure psychological com-
plexity

(Continued)
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Table 5. Continued

Author Year Features Contribution

Hamer and
Frewin [47]

1982 Software science metric Experimental validation and a critical analy-
sis of software science theory

Albrecht and
Gaffney [2]

1983 Software science metric Analyzed the relation among the size of a
programming system, its development ef-
forts, and Halstead’s software science metric

Shen et al. [79] 1983 Software science metric A critical analysis of Halstead’s software sci-
ence theory and review of related studies

Plagiarism

Ottenstein [70] 1976 Software science metric Developed plagiarism detection system for
FORTRAN based on the software science
metric

Donaldson
et al. [30]

1981 Variables, subprograms, input state-
ments, conditional statements, loop
statements, assignment statements,
calls to subprograms, order of the
statements

A system based on structural analysis to de-
tect similarities between programs written
in FORTRAN, COBOL, and BASIC

Grier [42] 1981 Total lines, code lines, comments, mul-
tiple statements, constants and types,
unused variables, used variables, proce-
dures and functions, control flow state-
ments such as for repeat, while, goto,
and software science metrics

Developed system “Accuse” for plagiarism
detection in PASCAL

Berghel and
Sallach [9]

1984 Lines of code, integer variables, vari-
ables, keywords, continuation state-
ments, initialization statements, assign-
ment statements, declaration statement,
assignment along with software science
metric

Investigated 15 complexity metrics to detect
similarities between FORTRAN programs—
confirmed that the soft science theory has no
unique practical value

Faidhi and
Robinson [33]

1987 Number of characters per line, com-
ments, average function length, re-
served word count, average identifier
length, number of labels, goto state-
ments, program intervals, User-defined
identifiers, program structure, program
impurity, etc.

Proposed six levels of program modifications
for plagiarism detection

Parker and
Hamblen [71]

1989 Not applicable A survey of plagiarism detection systems

Aiken [1] 1994 Hash values of documents k-grams An advanced system for detecting plagia-
rism in languages like C, C++, Java, and PAS-
CAL

Verco and
Wise [86]

1996 Not applicable Compared the performance of attribute-
counting- and structure metric–based sys-
tems

Prechelt
et al [72]

2002 Token strings extracted from source
code

An advanced plagiarism detection system
for Java, C#, C, C++, Scheme, and natural
language text

Liu et al. [66] 2006 Program dependence graph GPLAG: A system to detect plagiarism by us-
ing program dependence graph analysis of
source code

Walenstein and
Lakhotia [87]

2007 Not applicable Analysis of challenges in detecting similari-
ties between malware samples

Ji et al. [52] 2008 Token sequences extracted from Java
bytecode

Java plagiarism detection system using byte-
code based on adaptive local alignment

(Continued)
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Table 5. Continued

Author Year Features Contribution

Authorship Attribution

Oman and
Cook [69]

1989 Typographical or characteristics od lay-
out style such as blank lines, spacing,
line length, indentation, keywords, iden-
tifiers, and comment format

First to propose statistical analysis of style
markers and clustering approach for au-
thorship attribution

Spafford and
Weeber [82]

1993 Proposed features for binary and source
code

Described the theory of software forensics

Sallis et al. [77] 1996 Not applicable Review of authorship attribution studies

Krsul and
Spafford [56]

1997 Proposed more than 50 metrics classified
into program layout, style, and structure
metrics

Clarified the difference between differ-
ent authorship tasks; proposed using tech-
niques of authorship analysis to enhance
real-time intrusion detection systems

Ding and
Samadzadeh [29]

2004 Set of 56 metrics-based program layout,
style, and structure

Investigated the role of 56 extracted metrics
for Java authorship attribution; concluded
that layout metrics contribute most to au-
thorship attribution

Frantzeskou
et al. [38]

2006 Most frequent byte-level N-grams Introduced source code author profile ap-
proach based on byte-level N-gram and ex-
amined the role of comments for the task of
authorship attribution

Lange and
Mancoridis [60]

2007 Histogram distribution of 17 metrics
with a combination of text-based and
high-level syntactic features

First to use the set of normalized histogram
distributions of code metrics as the author
fingerprint

Burrows and
Tahaghoghi [13]

2007 Keywords and operators (function words
of a source code)

Performed N-gram analysis of keywords
and operators extracted from source code;
used information retrieval model useful for
plagiarism detection as well

Kothari et
al. [55]

2007 Style based and character sequences Evaluated performance of character-based
metrics for developing author profiles

Hayes [48] 2008 Number of program lines, number of
unique operators and operands, average
occurrence of operators and operands,
number of comments per line

Evaluation of a consistent programmer hy-
pothesis and authorship attribution using
five features

Elenbogen and
Seliya [32]

2008 Number of lines of code, number of
comments, average length of variable
names, number of variables, number of
for loops/number of total loops, and
number of bits in the compressed pro-
gram

Presented a data mining–based approach
to identify outsourced student assignment
programs

Shevertalov
et al. [80]

2009 Leading spaces and tabs, line length,
number of words per line

First to evaluate performance of the genetic
algorithm for the task of metric discretiza-
tion

Layton et
al. [63]

2010 Most frequent byte-level N-grams Introduced unsupervised source code au-
thor profile (SCAP) method for determining
phishing campaigns by applying clustering
techniques

Hayes and
Offutt [49]

2010 Number of lint warnings, unique con-
structs, constants and operands, average
occurrence of operators and constructs,
number of semicolons per comment, and
dynamic measure of testability

Evaluation of consistent programmer hy-
pothesis by analyzing different static and
dynamic features

(Continued)
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Table 5. Continued

Author Year Features Contribution

Chen et al. [21] 2010 Program dependence graphs Proposed a semantic approach to authorship
identification and program theft

Rosenblum
et al. [74]

2011 Stylistic features based on instruc-
tion sequence, control flow graph, ex-
ternal library calls

First to develop a binary code authorship at-
tribution and clustering method by analyz-
ing different representations of the structure
of the instruction and control flow

Bhattathiripad [10]
2012 Dead code, programming blunders First to propose use of dead codes and other

programming blunders for authorship anal-
ysis

Bandara and
Wijayarathna [8]

2013 Line length, word length, access
level, frequency of comment types,
identifiers length, white space and
tabs, frequency of use of underscore,
indentation

First to propose an unsupervised feature
learning technique using a sparse auto-
encoder

Chouchane
et al. [23]

2013 Opcode N-grams First to propose a malware attribution sys-
tem based on metamorphic engine attribu-
tion

Burrows et al. [15] 2014 Not applicable First to compare source code authorship at-
tribution techniques

Alrabaee et al. [3] 2014 Data structures, algorithms, appli-
cation programming interface, in-
put/output functions, type of encryp-
tion, programming choices, register
flow

First to propose a three-layered approach for
binary authorship task: Preprocessing by fil-
tering library and irrelevant code followed
by syntactic and semantic attribution

Tennyson and
Mitropoulos [85]

2014 Not applicable Evaluated profile length parameter for the
SCAP method

Caliskan-Islam et
al. [17]

2015 Word unigram, nesting depth,
branching factor, average parame-
ters of functions, logarithmic ratio
of each keyword, ternary operators,
words, comments, literals, unique
keywords, functions, macros to the
file length in characters

Proposed the use of lexical and syntactic fea-
tures extracted from the abstract tree repre-
sentation of the source code; introduced the
fuzzy parser to extract abstract syntax trees
even from incomplete code

Wisse and
Veenman. [91]

2015 Node expressions, statements, num-
ber of descendants of nodes, length
of lists defined in nodes, string pat-
terns on identifiers, type of com-
ments, type of parent node of com-
ments, length of comments, literal
data types, number of tabs, spaces,
return at a position

Proposed and evaluated a language-specific
programmer identification technique for
JavaScript source code

Caliskan-Islam et
al. [18]

2015 Not applicable First to conclude that syntactic features ex-
tracted from decompiled binaries survive
various compilation, obfuscation, and opti-
mization techniques

Alrabaee et al. [5] 2016 Semantic flow graph analysis by
combining data and control flow
analysis of functions

Developed a robust system—BinGold—for
evaluating similarity between binary files
based on semantic graph analysis

Meng [68] 2016 Features based on instructions, con-
trol flow, dataflow, context of the
block

First to propose identifying multiple authors
of a program by analyzing basic blocks

(Continued)
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Table 5. Continued

Author Year Features Contribution

Dauber
et al. [26]

2017 Same as Caliskan-Islam et al. [18], with the
addition of word bigram and trigram

First to study authorship of partial, small,
segmented code samples

Alsulami
et al. [6]

2017 Number of children in abstract syntax trees
(ASTs), subtrees, AST depth, etc.

Proposed AST-based source code author-
ship attribution using deep neural net-
work models

Zhang et al. [93] 2017 Import, if statements, loop statements,
leading whitespaces of lines, percentage of
blank lines, comments, keywords, add op-
erations, average length of methods, oper-
ators, use-defined identifiers, punctuation

Proposed an approach to construct author
profiles based on a source code logic model
and a multi-level context model

Yang et al. [92] 2017 Ratio of blank lines to code lines, ratio of
comment lines to code lines, percentage of
block comments in comment lines, open
braces alone in a line, variable naming
without uppercase letters, average variable
name length, average number of methods
per class, max AST depth, etc.

First to introduce a back-propagation neu-
ral network based on particle swarm op-
timization to authorship attribution of
source code

Alrabaee
et al. [4]

2017 Not applicable A survey of recent advances in binary au-
thorship attribution

Simko et al. [81] 2018 Variable name, API calls, macros, literals,
keywords

Evaluated a state-of-the-art attribution
system against adversaries’ tactics and ca-
pabilities

Gonzalez
et al. [41]

2018 Number of methods, classes, fields, strings,
usage of data structures, and array opera-
tion opcodes extracted from .dex file

First to attribute unlabeled Android apps
by automatic learning and creating new
profiles

Kulgutkar
et al. [59]

2018 Unreferenced strings, DEX strings, appli-
cation strings, and all strings

First to design an Android authorship at-
tribution system by leveraging different
string components of apps
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