q

Check for
updates

Origin Attribution of RSA Public Keys

Enrico Branca, Farzaneh Abazari, Ronald Rivera Carranza,
and Natalia Stakhanova®™)

Department of Computer Science, University of Saskatchewan, SK, Canada
{enb733,faa851,rer655,natalia}@usask.ca

Abstract. In spite of strong mathematical foundations of cryptographic
algorithms, the practical implementations of cryptographic protocols
continue to fail. Insufficient entropy, faulty library implementation, API
misuse do not only jeopardize the security of cryptographic keys, but
also lead to distinct patterns that can result in keys’ origin attribution.
In this work, we examined attribution of cryptographic keys based on
their moduli. We analyzed over 6.5 million keys generated by 43 cryp-
tographic libraries versions on 20 Linux OS versions released over the
past 8 years. We showed that with only a few moduli characteristics, we
can accurately (with 75% accuracy) attribute an individual key to the
originating library. Depending on the library, our approach is sensitive
enough to pinpoint the corresponding major, minor, and build release
of several libraries that generated an individual key with an accuracy
of 81%—-98%. We further explore attribution of SSH keys collected from
publicly facing IPv4 addresses showing that our approach is able to dif-
ferentiate individual libraries of RSA keys with 95% accuracy.

Keywords: RSA security - Cryptographic libraries + Attribution

1 Introduction

Secure communication on the Internet is becoming a norm. Nowadays, nearly
90% of all Internet communication is encrypted. While in theory, crypto-
graphic solutions are provably secure, in practice, the security of communica-
tion depends on the correctness of implementation of the existing tools that
support encryption standards. Over the past decade, numerous studies pointed
out weaknesses of cryptographic security of various protocols (TLS/SSL [18],
SSH [16], HTTPS [2,10,17]). The majority of these studies investigated insuf-
ficient security of generated keys as a main root cause of the problem. Some
studies traced the problem to weak random key generators and the lack of
entropy [8,13,18], while others noted the improper implementation of crypto-
graphic libraries [11,26,29,37], and pure misuse of cryptographic algorithms,
e.g., keys embedded in binary files [12].

As a consequence, the number of studies developed techniques to identify
insecure and vulnerable keys. The vast majority of these approaches focus on
analysis of binaries that contain vulnerable keys [26,27,33,35], or crypto libraries
and APIs that produce those keys [31,37].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. Garcia-Alfaro et al. (Eds.): SecureComm 2021, LNICST 398, pp. 374-396, 2021.
https://doi.org/10.1007/978-3-030-90019-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90019-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-90019-9_19

Origin Attribution of RSA Public Keys 375

Misconfigurations of cryptographic algorithms and cryptographic operations
can potentially lead to distinct patterns in the generated keys and can be lever-
aged in identifying their origins. This observation was first explored in the study
by Svenda et al. [37] that noted that combination of implementation decision
made in software libraries in a presence of certain hardware is sufficient to iden-
tify a probable origin of a key. Their work was further improved by Nemec
et al. [31]. Both approaches in their attribution analysis relied on a set of rules
defined through a preliminary analysis of biases of the known libraries. In spite
of higher accuracy of attribution obtained by [31], none of these approaches were
able to attribute an individual key to a specific library, focusing on attribution
to groups of similar libraries.

The question that remains is whether it is feasible to identify an exact origin
of an individual cryptographic key. Addressing this question has direct practi-
cal implications. In cryptographic theory, the attribution of keys should not be
possible, an accurate tracing of a key to its specific library version allows for fine-
grained fingerprinting of cryptographic libraries, which has a number of practical
uses from undermining anonymity of Internet users by allowing more accurate
profiling of their activities to direct attacks on libraries and protocols [25]. The
attribution of keys also implies that these identifiable library implementations
embed predictable patterns in the generated keys, thus reducing key space, and
allowing for faster key factorization [14].

In this work, we propose a source attribution approach based on the charac-
teristics of RSA key modulus. We analyze the characteristics of RSA public key
modulus to understand how much information one needs to trace an individual
key to its originating library. The underlying assumption of the source attribu-
tion of cryptographic keys is the presence of distinct bit patterns in keys that
allows to predict where this key was generated. To quantify these patterns, we
derive spatial characteristics of each key moduli to estimate its position in the
numerical spectrum and the likelihood that such key may have been generated
by a particular library.

To validate our approach, we tested over 6.5 million keys generated by 43
cryptographic libraries versions on 20 Linux OS versions released over the past
8 years. Our experiments show that we can accurately attribute an individual
key to the originating library with 75% accuracy with only a few modulus char-
acteristics regardless of its patch level, and its release date. We are further able
to produce a fine-grained attribution of a key to the corresponding major, minor,
build and in some cases patch releases for several libraries achieving accuracy in
the range of 81%-98%.

Our findings suggests that code changes applied to some library implementa-
tion between versions leave significant traces in the generated keys, consequently,
allowing for accurate origin attribution.

We compare our approach to the most recent study by Nemec et al. [31].
Their previous work was able to accurately (94% accuracy) attribute the keys
to the groups of similar libraries. We show that our approach outperforms their
technique providing a more granular attribution to an individual library and its
version.

376 E. Branca et al.

We further explore origin attribution of almost 200,000 RSA keys collected
from publicly facing IPv4 addresses. Our analysis of these collected keys shows
that they generally come from homogeneous pool of libraries. We are able to
differentiate individual libraries of RSA collected keys with 95% accuracy. For
individual versions we obtained 68% to 100% accuracy for most libraries that
had a sufficient number of keys. More importantly, we have been able to do this
without any prior knowledge on the system, hardware platform or the library
that generated them. To summarize, we

1. Propose a source attribution approach that can link an individual crypto-
graphic key to the originating library and its specific version. Our approach
does not rely on previous knowledge of cryptographic library’s weaknesses.

2. We evaluate and select the top distinctive moduli characteristics that con-
tribute the most in discriminating individual keys.

3. We test the performance of our attribution on a set of keys collected from
publicly facing IPv4 addresses. Both sets of generated keys and collected keys
are available at https://cyberlab.usask.ca/attributionRSAkeys.html.

This paper is organized as follows: Sect. 2 gives an overview of related work in
the field. We briefly introduce the RSA cryptosystem in Sect. 3 and explain our
proposed approach in Sect. 4. In Sect. 5, we demonstrate the results of key attri-
bution. Section 6 applies our attribution approach to a real-world keys collected
on the Internet.

2 Related Work

In spite of strong mathematical foundations of cryptographic algorithms, the
practical implementations of cryptographic protocols continue to fail. The study
of real-life spread of vulnerable keys across the Internet by Heninger et al. [18]
showed that out of 6.2 million SSH keys collected in the wild 0.03% can be
factored within 2h. Similar results were obtained by Lenstra et al. [24] on the
analysis of TLS certificates.

These cryptographic failures rarely occur due to shortcomings of an algo-
rithm’s theoretic design or technological advances. Predominantly the compro-
mise of cryptographic protocols happens due to errors in their implementation
or due to human oversight in proper configuration or selection of parameters.
Lazar et al. [23] examined 269 cryptographic vulnerabilities showing that 83% of
bugs were related to misuses of cryptographic libraries, while 17% were bugs in
libraries’ implementation. Several studies showed that application programming
interfaces (APIs) themselves, their complexity and improper default parameters,
contribute to the cryptographic misuse [1,30].

A significant number of vulnerabilities in cryptographic keys are stemming
from problems of random numbers generators (RNGs). The 2012 study by
Heninger et al. [18] attributed the majority of factored RSA keys to memory

https://cyberlab.usask.ca/attributionRSAkeys.html

Origin Attribution of RSA Public Keys 377

constrained devices (such as routers, smart cards, firewalls) that have limited
sources for generating appropriate randomness. Indeed, RSA prime factorization
arithmetic can be computationally expensive for resource constrained devices.
This often leads to various practises that shortcut appropriate key generation
and consequently leads to weak public keys that allow an attacker to calculate
the private key from a public key.

Yilek et al. [39] examined the spread of keys affected by the highly publicized
bug discovered in 2008 in OpenSSL library that generated predictable random
numbers. They noted that even after six months of disclosure, weak keys resulting
from the buggy implementation were still being issued and widely used. Slow
response was also noted by Hastings et al. [17] in their follow-up study that
factored 313,000 RSA keys.

Several studies developed techniques to identify insecure and vulnerable keys.
The vast majority of these approaches focus on analysis of binaries that contain
vulnerable keys [26,27,33,35]. Insufficient entropy, faulty library implementa-
tion, API misuse do not only jeopardize the security of cryptographic keys, but
also lead to distinct patterns that can result to keys’ origin attribution.

Svenda et al. [37] tested if cryptographic hardware cards and libraries comply
with the quality and security expectations regarding randomness and resistance
against well-known RSA attacks. Within this study they identified seven imple-
mentation decisions tied to specific hardware cards and libraries. Cumulatively,
these implementation patterns allow to attribute the origin of RSA keys based
on the moduli. Their analysis of 60 million generated RSA keys showed the via-
bility of the approach. They were able to correctly label the origin of 40% due to
software and hardware differences in their design, implementation choices and
faulty RNGs.

Nemec et al. [31] applied the approach developed by Svenda et al. [37] to
examine popularity of cryptographic libraries on the Internet. They identified
that efficiency improvements, implementation choices and bugs are the main
sources of biases when selecting primes p and ¢, and since these biases can
sometimes be observable from the moduli, it is possible to group libraries based
on their similarities. The authors showed that it possible to attribute individual
keys (with over 94% accuracy) to groups of similar libraries.

Both approaches (i.e., [37] and [31]) in their classification analysis relied on
a set of rules defined through preliminary analysis of key misuses of known
libraries. Among other things, both approaches required an estimation of prior
probabilities for domain where the key to be attributed is coming from. The
studies showed that the better this estimate, the better the accuracy of their
approaches. Yet, in spite of high accuracy of attribution, none of these approaches
were able to attribute keys to individual libraries within groups.

Muslukhov et al. [29] also noted that the improper implementation of crypto-
graphic libraries can leak the origin of a key. Their approach, BinSight, performed
a static analysis of Android applications detecting calls to crypto APIs. Similarly
to [37] and [31], it was identifying misuses against a set of crypto rules. In this

378 E. Branca et al.

ooo textus!

numerical
ooo features
Dt::;de ‘n 2 modulus . @
omat | L
Feature extraction Classficaton
Parsing Analysis

Fig. 1. The flow of the proposed approach

research, we attribute individual keys to the corresponding libraries without a
prior knowledge of specific library weaknesses.

3 Background

In this work, we focus on the RSA (Rivest—Shamir-Adleman) algorithm as this is
arguably the most popular cryptographic system utilized on the Internet today.
RSA is an asymmetric cryptographic algorithm that leverages the fact that while
multiplication of large prime numbers is not computationally intensive, factor-
ization of large prime numbers is significantly more complex.

As such an RSA public key is theoretically generated based on two large
prime numbers p and ¢ used to calculate the modulus n. Specifically, an RSA
key can be generated as follows:

1. Pick two primes p and ¢ to calculate the modulus n, n = p * ¢. Both primes
should be large (i.e., size > 1024), random and p # gq.

2. Calculate ¢(n) = (p—1)(¢ — 1),

3. Select exponent e, ¢(n)— 1 will serve as an upper limit when selecting a value
for e which should be large (i.e., size > 1024) and random. The value for e
should be restricted to e € 1,2,...,¢(n) — 1. In addition, the GCD(e, $(n))
must be equal to 1 so that we know that they are relatively prime.

4. Calculate private key component d: de = 1(mod¢(n)).

As a result, an RSA public key Pubr = (e,n) is represented by an exponent e
and a modulus n, while an RSA private key Privy is usually a pair (d,n).

The RSA algorithm is implemented in a variety of the cryptographic libraries.
For our analysis, we use the most common open-source libraries: OpenSSH,
OpenSSL, GnuTLS, and GPG.

4 Analysis Methodology

Several previous studies [31,37] showed that various implementation decisions
and shortcuts of cryptographic libraries propagate to RSA keys creating a bias.

Origin Attribution of RSA Public Keys 379

In this work, we analyze the characteristics of RSA public key to understand
how much information one needs to trace an individual key to its originating
library.

The underlying assumption of the source attribution of cryptographic keys
is the presence of distinct bit patterns in a single key that allows to predict
where this key was generated. Source attribution of the keys does not consider
factorizing the modulus n and relies on the numerical and textual features of
the modulus, such as a longest repeated substring and a percentage of bits equal
to one.

The overview of the attribution approach is illustrated in Fig. 1. The gen-
erated cryptographic keys are decoded and parsed to derive a key modulus. As
the first step in our analysis, we examine the characteristics of keys’ moduli gen-
erated from known libraries, estimate the randomness of moduli, establish and
analyze the distinctive bit patterns. We use the retrieved patterns in classifica-
tion analysis to attribute keys to their origin library.

We further analyze contribution of individual patterns to the accuracy of
attribution. In our attribution analysis, we employ six classifiers with different
logic to understand their effectiveness in discriminating keys originated from
different libraries.

4.1 RSA Keys Generation and Parsing

To establish ‘ground truth’, we generated 6.5 million RSA keys using 4 cryp-
tographic libraries on 9 most widely used Linux distributions released over the
past 8 years. We made the design choice to use the cryptographic library ver-
sion that was shipped with the OS, assuming that this version would have been
officially tested and certified by each Linux distribution security teams. Overall,
we tested 43 cryptographic libraries versions on 20 versions of Linux distribu-
tions. To ensure sufficient entropy for key generation, we enabled software-level
random number generator Haveged [36] and used two hardware random number
generators: TrueRNG [38] and NeuG [40].

The details of the generated keys are given in Table 2. All keys were generated
2048 bit long as this is the minimum key size recommended by NIST to be used
in an RSA algorithm. We verified that all generated keys are valid and NIST
standard-compliant, i.e., all moduli are unique, exactly 2048 bits long, and have
prime components. To test for primality, we used the Miller-Rabin primality
test. To understand the potential randomness of generated keys, we performed
the following NIST statistical tests [5]:

Discrete Fourier Transform (DFT) test that detects periodic features (i.e., repet-
itive patterns that are near each other) in the tested sequence that would indicate
a deviation from the assumption of randomness.

Monibit test that checks the proportion of zeroes and ones for the sequence. The
purpose of this test is to determine whether the number of ones and zeros in a
sequence are approximately the same as would be expected for a truly random
sequence.

380 E. Branca et al.

While a number of studies acknowledged weaknesses of some NIST statistical
tests (e.g., Marsaglia’s Diehard, and TestUO01 [20]), they still serve as one of
generic instruments in assessing key randomness.

The results of these tests are given in Table 1. The overwhelming majority
of the keys passed both tests. In other words, the produced bit sequences are
considered random.

Table 1. The results of NIST statistical tests on the set of generated keys

Test Number of keys that Number of keys that
passed the test failed the test

Monobit test | 6,700,705 (99%) 66,373 (1%)

DFT test 6,674,844 (98%) 92,234 (2%)

4.2 Key Analysis and Representation

Previous study by Nemec et al. [31] identified several rules that cumulatively
form a fingerprint allowing to identify a key source (i.e., a group of similar
libraries). The rules are specific to the analyzed libraries and are derived from the
identified in advance bias of cryptographic libraries. We take a different approach
and extract features that are independent of knowledge of the originating library,
underlying platform, and operation system.

The intuition of our approach is simple. A bounded numerical space deter-
mines a pool of available keys for each library. If any specific rule exists in the
key generation process, the generated keys will contain a pattern that reflects
the reduced numerical space.

For each key, we consider numerical and textual representation of a modulus
and derive features that quantify its randomness and its spatial characteristics.

Numerical Representation. The following types of features are derived:

— Modulus characteristics: size, primality of components, entropy.

— The cutoff value characteristics: most algorithms for generating RSA modulus
set bits in certain positions (usually first two bits are set to 1, and last is set to
1)! which defines/reduces a numerical space for selecting potential modulus.
For example, for an explanation of how OpenSSL library sets the bits refer
to [32]. The cutoff value represents the minimum value that can be ever
generated for a modulus in such space. We calculate a cutoff value and check
its position against an actual integer value of the generated modulus (we refer
to it as offset position).

— Bin position: helps us determine the preference of the library in choosing
a modulus within a specific range. Given the fact that the numerical space
available for each key is defined by the size in bits, to compare keys of different
sizes, we divide the numerical space into 100 sections and assign a positional

! For example, setting last bit to 1 ensures that the number is odd.

Origin Attribution of RSA Public Keys 381

Table 2. The summary of the generated keys
(O OS Version | Year | OpenSSH library | GnuTLS library | GPG library | OpenSSL library
Ubuntu 20.04 2020 | 8.2pl 3.6.13 2.2.19 1.1.1d
Ubuntu 18.04 2018 | 7.6pl 3.5.18 224 1.1.1
Ubuntu 16.04 2016 | 7.2p2 3.4.10 2.1.11 1.0.2g
Ubuntu 14.04 2014 1 6.6 * 2.0.22 1.0.1f
Ubuntu 12.04 2012 |5.9 * * *
Mint 20 2020 | 8.2p1 3.6.13 2.2.19 1.1.1f
Mint 19 2020 | 7.6pl 3.5.18 224 1.1.1h
Fedora 30 2019 | 8.0p1 3.6.10 2.2.13 1.1.1b
Fedora 23 2015 | 7.1pl 3.4.5 2.1.7 1.0.2d
Fedora 20 2014 | 6.3 3.1.16 * 1.0.1e
Fedora 17 2012 15.9 * * 1.0.0i
Fedora 14 2010 | 5.5 * * 1.0.0a
CentOS 8.2.2004 2019 | 8.0p1 3.6.8 * 1.1.1c
Manjaro 20 2020 | 8.3p1 3.6.15 2.2.23 1.1.1g
Swift 4.19.0 2018 | 7.9p1 * * 1.1.1d
Endeavour | 5.8 2020 | 8.3p1 3.6.15 2.2.23 1.1.1g
Kali 2020.3 2020 | 8.3p1 3.6.15 2.2.20 1.1.1g
Oracle R8 2019 | 8.0p1 3.6.8 * 1.1.1c
Oracle R7 2017 | 7.4p1 * * 1.0.2k
Oracle R6 2013 | 5.3pl * * 1.0.1e
Total generated keys 3,084,936 1,165,984 616,159 1,899,999

Asterisks (*) indicate cases when certain libraries or their dependencies are no longer
available for specific Linux distributions.

value to each key depending on where it falls with respect to its relative
section. An analysis of the spatial characteristics of a key moduli (Bin value
together with cutoff and its position) can allow us to identify, not only the
size of the theoretical numerical space used by the library, but also compare
the relative position of each key with the position of all other keys that share
same characteristics and belong to the same numerical space.

As an estimator of string randomness, we employ Brotli [21] and Lempel-
Ziv-Markov chain (LZMA) compression [34] algorithms. The ‘degree of ran-
domness‘ can be expressed as ‘ratio of compressed file to uncompressed file,
where the compression ratio provides a quick way to visualize the randomness
used by a library when generating a key.

Textual Representation. To identify and derive all possible bit patterns, we
convert the binary representation of a key into a textual format. To exhaustively
search for all possible patterns, we employ an overlapping sliding window tech-
nique with windows of size n = 8 to 256. We derive the following types of textual
features for all window sizes:

382 E. Branca et al.

— Longest repeated substring (LRS) characteristics: we estimate the presence
and the corresponding characteristics of longest repeated substring patterns
within a modulus.

— 0’s & 1’s characteristics: we determine and profile a maximum length of
continuous zeroes or ones within the string representation of a modulus.

— Characteristics of mirror patterns. The modulus’ binary string is represented
as two halves of equal size, we then perform a comparative analysis of the n
bit patterns found in the first half vs the n bit patterns in the second half.
This produces features such as Most significant bits (MSB) - Least significant
bit (LSB) pattern of length n, mirror pattern, i.e., n bits of the first half of
the modulus found on the second half of the modulus, position and frequency
of mirror patterns, etc.

4.3 Classification

We explored performance of 6 classification algorithms: Gaussian Naive Bayes,
Neural Networks, Decision Trees, Discriminant Analysis, Random Forest, and
Logistic Regression analysis.

Gaussian Naive Bayes is based on Bayes’ theorem that assumes an inde-
pendence between features [6]. Even though feature independence assumption
rarely holds true, NB models perform surprisingly well in practice [3]. The Gaus-
sian Naive Bayes classifier is one of its versions that follows a Gaussian distribu-
tion and assumes the presence of data with continuous values which is the case
in our datasets.

Neural Networks (NN) [28] are a series of algorithms that mimic the oper-
ations of a human brain to detect relationships between high volumes of data.
Since neural networks can have many layers and parameters with non-linearities,
they are very effective at modelling highly complex non-linear relationships. Neu-
ral networks operate well with large amounts of training data.

Decision Trees (DT) [7] produces a sequence of rules that can be used to
classify the data when a data of features together with its target are given. The
decision tree classifier can be unstable because small variations in the data might
result in a completely different tree being generated.

Discriminant Analysis model is composed of discriminant functions based
on linear combinations of the features that provide the best discrimination
between the classes [22]. This model assumes that different classes generate data
based on different Gaussian distributions. Linear Discriminant Analysis (LDA)
provides multi-class classification which is suitable for our analysis.

Random forest (RF) [19] classifier is an ensemble that fits a number of
decision trees on various sub-samples of datasets and uses the average to improve
the predictive accuracy of the model.

Logistic Regression(LR) [9] is a linear classifier that predicts probabili-
ties rather than classes. We use multinomial logistic regression classification to
calculate the probability of key modulus z belonging to a target class.

Our approach was implemented using the Python language (v 3.8.5) with
the scikit-learn library (v 0.23.2). A summary of the classification algorithms’

Origin Attribution of RSA Public Keys 383

parameters is given in Table 3. 5-fold cross-validation was employed to measure
the accuracy of the machine learning models.

Table 3. Machine learning model parameters

Name Parameter Kernel

Gaussian Naive Bayes var_smoothing = le-9 Non-linear

Neural Network max_iter=10000, learning_rate=‘adaptive’, Non-linear
solver=‘adam’, alpha=1

Decision Trees max_depth=100 Non-linear

Linear Discriminant Analysis | solver = ‘svd’, shrinkage = None Linear

Random Forest n_estimators = 100, min_samples_split = 2, Non-linear

min_samples_leaf = 1, max_features=“log2”,
criterion = ‘entropy’

Logistic Regression penalty="“12", max_iter=100000, solver="“lbfgs”, | Linear
multi_class=“multinomial”

5 Attribution Results

The results of attributing 6,767,078 keys to the individual libraries are shown
in Fig. 2(a). The best average classification accuracy (75% accuracy) is obtained
with Random Forest, Logistic Regression, and Neural Network algorithms. The
average accuracy is computed based on the accuracy for each class and the
number of keys in that class. 5-fold cross-validation was employed to measure
the accuracy of the models with 75% of data for training purposes and 25% for
testing.

Features. As we anticipated, not all the characteristics extracted from the key
material equally contribute to the classification accuracy. To ensure that we keep
only features with a measurable impact on the overall accuracy, we have retained
features which have an ‘Information Gain’ (IG) of at least 0.005.

Compared to the overall set of features, we have been able to maintain the
same accuracy by selecting the 14 most contributing features (see Appendix).
The further analysis of the most significant features shows that while different
features are ranked differently for different libraries, the core features remain
the same. The core features across various libraries are Brotli compression, LRS
pattern, LRS position, Zeroes position, Ones position, Mirror all positions, Mir-
ror position, Mirror all patterns and Bin. Note that only features with windows
size n = 8 proved to be most significant across all libraries.

One of the challenges that previous studies faced is the necessity to define
crypto rules, i.e., weak implementation decisions that effectively lead to bias in
the produced keys. The selected characteristics mentioned before are generic and
independent from the underlying library.

384 E. Branca et al.

Attribution Across Library Versions. While the performance of classifiers remain
somewhat stable for different amount of keys, we found that the accuracy varies
depending on the individual characteristics of the source library.

To further understand the granularity of our approach to discriminate keys,
we have evaluated attribution across library versions. Figure 2(b) shows the aver-
age accuracy of attributing the individual keys to the libraries’ versions. The
best average accuracy of 85% is obtained with Random Forest (RF) classifica-
tion algorithm. Since both experiments showed that RF performs the best in our
setting, we further use this classifier in the analysis.

100 100
80 80
S -
< 60 £ 60
9 oy
3 40 § 40
1%}
< —e— GaussianNB <
—% Neural-Net —
—&— DecisionTree
201 o |ogistic-Regression 20 e
—¥— RandomForest —- GPG
—a— LinearDiscriminant —e— OpenssL
0 0
50,000 100,000 6,767,078 GNB NN DT (R RF LDA
Number of Kevs Classifier
(a) Attribution of keys to their source li-(b) Inter-Library attribution of keys to
braries the corresponding library version

Fig. 2. The accuracy of attributing generated keys to the originating library and library
versions

Table4 presents more granular results of attributing keys by major and
minor release versions with its corresponding libraries?. Since we do not have
enough key material from GnuTLS, GPG, and OpenSSL libraries to discrimi-
nate between major versions, their corresponding experiments were performed
for major and minor releases.

We can observe that certain libraries have clearly distinguishable patterns
(e.g., GPG, OpenSSH 8.x).

Theoretically, code changes applied to a library that occurred within a major
version should not have any significant impact on the generated keys, while major
changes that culminate with the release of a new version should equate to marked
differences. Despite our assumptions, our results seem to suggest that, regardless
of the library type or version, it is possible to attribute a cryptographic key not
only to the library type but more specifically to its specific major and minor
version.

2 We refer to library version using a conventional notation of software versioning where
each version is represented by major.minor[.build[.patch]].

Origin Attribution of RSA Public Keys 385

Table 4. Attribution accuracy for library versions (Random Forest)

Library Version | Accuracy | Number of keys
OpenSSH | 5.x 100% 391,928
OpenSSH | 6.x 0% 193,009
OpenSSH | 7.x 24% 700,000
OpenSSH | 8.x 63% 1,799,999
GnuTLS |3.1.x 0% 100,000
GnuTLS |3.4.x 0% 200,000
GnuTLS |3.5.x 0% 154,142
GnuTLS |3.6.x 61% 711,842
GPG 2.0.x 76% 28,657
GPG 2.1.x 98% 149,010
GPG 2.2.x 82% 438,492
OpenSSL | 1.0.x 53% 800,000
OpenSSL | 1.1.x 63% 1,099,999

The most difference among versions is produced by GPG library, where it is
possible to attribute the key to a specific version with an accuracy ranging from
a minimum of 76% for 2.0.x version to a maximum of 98% for 2.1.x version.

The accuracy for other types of libraries varies depending on the library ver-
sion. For example, we were only able to attribute keys to 3.6 version of GnuTLS
library (61%). Our current assumption is that such variability may stem from
the changes in the logic or structure of cryptographic primitives implemented in
a library.

Fine-grained Origin Attribution. To further understand this phenomenon, we
analyzed the release notes for each library®. We aggregated the library versions
available in our generated set to reflect the modifications in libraries that involve
any changes (i.e., improvements) related to random number generation process.
As a side note, the GPG release notes did not provide sufficient level of details
on what was changed and when, therefore we were not able to derive further
groupings for this library.

The results presented in Table5 give an insight into the variability in attri-
bution of keys, where only major and minor versions are taken into consider-
ation. For example, OpenSSH 5.9/5.9p1 release switched to obtaining random
numbers directly from OpenSSL or from a PRNGd/EGD instance specified at
configuration time. This caused a structural change in produced keys resulting
in distinctive patterns in keys generated before 5.9 release. Hence, we were able
to distinguish keys generated with earlier versions with 81% accuracy.

3 GnuTLS: https://gitlab.com/gnutls/gnutls/blob/master/news.
OpenSSH: https://www.openssh.com/releasenotes.html.
GPG: https://gnupg.org/download/release_notes.html.
OpenSSL: https://www.openssl.org/news/changelog.html.

https://gitlab.com/gnutls/gnutls/blob/master/news
https://www.openssh.com/releasenotes.html
https://gnupg.org/download/release_notes.html
https://www.openssl.org/news/changelog.html

386 E. Branca et al.

Table 5. Attribution accuracy of generated keys by minor build version groupings
(Random Forest)

Library Release groupings™* | Accuracy | Number of keys
OpenSSH | [5.3p1-5.9]* 81% 191,928
OpenSSH | [6.3] 50% 293,009
OpenSSH | [6.6] 0% 100,000
OpenSSH | [7.1p1-7.2] 0% 200,000
OpenSSH | (7.2-7.6) 0% 300,000
OpenSSH | (7.9+] 69% 199,999
GnuTLS | [3.1.16] 0% 100,000
GnuTLS | [3.4.5-3.4.10] 0% 200,000
GnuTLS |[3.5.18] 0% 154,142
GnuTLS | [3.6.8+] 61% 711,842
GPG 2.0.x 76% 28,657
GPG 2.1x 98% 149,010
GPG 2.2.x 82% 438,492
OpenSSL | (1.0.0a—-1.0.1f] 13% 200,000
OpenSSL | (1.0.1f-1.0.2k] 20% 300,000
OpenSSL | (1.0.2k—1.1.0] 20% 300,000
OpenSSL | [1.1.1] 34% 299,999
OpenSSL | [1.1.1b] 8% 100,000
OpenSSL | [1.1.1¢] 13% 200,000
OpenSSL | [1.1.1d] 93% 200,000
OpenSSL | (1.1.1d-1.1.1h] 34% 300,000

* An inclusive bound is represented by ‘[’, an exclusive bound
is represented by ‘(’.
** Based on the available data in Table 2.

It should be also noted that in some cases such drastic changes to underly-
ing libraries happen between even within build releases. For example, OpenSSL
library version 1.1.1d came out with a completely rewritten random number
generator which in turn resulted in 93% of the produced keys to be positively
linked to this specific version of OpenSSL.

In some cases, such as GnuTLS before version 3.5.19, or OpenSSH between
version 6.8 and 7.8, our approach was unsuccessful in attributing keys to the
corresponding library (0% accuracy), which in fact is a general expectation of
cryptographic keys. The produced key should not bear any signs of the originat-
ing library.

We speculate that changes involving the memory usage of the randomness
pools, and the decision of leaving to the OS the responsibility to ensure a proper
initialization during early boot time, negatively impacts the entropy distilla-
tion process that leads to the presence of discernable patterns in the resulting
cryptographic key.

Origin Attribution of RSA Public Keys 387

Comparative Analysis. To better estimate the accuracy and efficacy of our solu-
tion, we have decided to compare the performance of our source attribution
approach to the performance of the model developed by Nemec et al. [31]. We
have therefore implemented and applied their approach on the set of our gener-
ated keys. The results are given in Table 6.

Nemec et al. approach showed a feasibility of attributing keys to groups
of similar libraries (with over 94% accuracy), yet it fails to trace individual
keys to their corresponding libraries achieving at most only 42% accuracy. Since
the accuracy of their approach is low, we have not evaluated a more granular
attribution to specific library versions.

Table 6. Classification accuracy of Nemec et al. [31] approach on the generated keys

Model Accuracy | Model Accuracy
GaussianNB | 35% Logistic Regression | 42%
Neural-Net | 42% Linear Discriminant | 42%
Decision Tree | 23% Random Forest 40%

6 Internet Scan of IPv4 Hosts

To explore the origins of RSA keys on the Internet, we have performed an attri-
bution of RSA public keys collected from openly available and publicly reachable
Internet servers.

6.1 Collected Data

For our analysis, we contacted 220,837 systems over IPv4, with each system
geo-located within the Canadian cyber-space and that would accept connections
on ports 22 and/or 2222. We collected the keys during 83d from August to
November 2019, collecting keys using the Secure Shell Host (SSH) protocol, by
making a single connection to each host and requesting their public SSH-RSA
key. Over this period of time we collected 191,976 SSH keys. Among our collected
keys, the majority (191,005) were received through SSH v2.0 protocol (Table 7).

The majority of keys (155,107) were generated using the OpenSSH library,
which is known to be one of the most widely used SSH libraries on the Internet.
Among the collected keys, part of them was generated using older versions of
the library (e.g., OpenSSH 1.x and OpenSSH 3.x were released in 2000 and
2001, respectively). It is worth noting that we did not find any key having been
generated with OpenSSH 2.x. Furthermore, we also noticed the existence of 89
keys apparently generated by an OpenSSH library version 12.x that seems to be
invalid as the most recent version of OpenSSH at the time of this writing is 8.x.

We then proceeded to extract keys components (i.e., modulus and exponent)
from the SSH-RSA public keys and compiled a set of 110,798 unique moduli asso-
ciated with 7 unique exponents. We then organized the SSH-RSA keys according

388 E. Branca et al.

to their size in bits (i.e., the moduli size) and identified 24,400 keys with a legacy
or deprecated status. Currently, NIST compliant RSA keys are required to have
a lengths greater or equal to 2048-bits [4], and in our set 167,576 keys were found
to have at least 2048 bits.

In addition to the cryptographic material from RSA keys, we have recorded
key collection date, IP address and TCP port, SSH protocol version and SSH
banner. When a banner was present, we have parsed such banner to infer the
name of the SSH library that answered our connection request, the SSH version of
such library, and the presence or absence of High-Performance SSH/SCP patches.
Finally, from the key material we computed SSH-MD5 and SSH-SHA256 of each
key to use as fingerprints. We refer to these data points as protocol-related
features.

Table 7. General statistics of the retrieved keys

Total distinct IPv4 hosts scanned | 220,837 | Key with moduli size <2048 bits | 24,400
Distinct SSH RSA keys 191,976 | SSH version 1.99 971
Distinct SSH RSA moduli 110,798 | SSH version 2.0 191,005
Distinct SSH RSA exponents 7 | OpenSSH library 155,107
Keys with moduli size >2048 bits | 167,576 | Other library 36869

6.2 Source Attribution

To analyze the performances of our key attribution approach, we designed a set of
experiments to analyze the effect of the key size on the accuracy of different types
of classifiers. In order to analyze the importance of dataset size, we randomly
selected 7 subsets of 191,976 keys collected from the Internet and created sub-
samples with a size of 100, 1000, 5000, 10000, 50000, 100,000 and 191,975 keys
each. For each of the subsets we allocated 75% of data for training purposes and
25% for testing, using a random sampling technique that makes use of stratified
k-folding to reduce bias and increase the likelihood of balanced samples.

Subsequently, we performed two experiments, one to identify the type of
library regardless of major or minor versions of each library, and another series
of tests where we tried to positively associate each key with a major and minor
version of each library. We performed such experiments with different combina-
tions of feature sets in order to understand what type of features may provide a
better source attribution.

Figure 3 shows the ability of six distinct types of classifiers to attribute a key
to a specific library, according to different combinations of feature sets.

Most classifiers have a comparable performance with the exception of Gaus-
sian Naive Bayes. With our approach, we are able to reach a significant level of
accuracy (over 90% with RF) across all sets of features for 191,976 keys. The
best accuracy (95%) was obtained with all, textual alone, and protocol-related
together with textual features with RF classifier (Fig.3 (a), (¢) and (f)).

Origin Attribution of RSA Public Keys 389

Table 8. The list of top features (Random Forest)

Features | Description Accuracy
Top 1 Mirror all patterns 62%
Top 2 Bin, Offset 65%

Top 5 Bin, LZMA compression, Offset, Brotli compression, | 78%
Mirror all patterns

While it is not surprising to see the effect of protocol-related features on
attribution, it should be noted that textual features that only retain internal
characteristics of a modulus provide the same accuracy. This finding supports
our earlier assumption that the logic or structure of cryptographic primitives
implemented in a library leaves distinct traces on the generated key modulus.

Table 8 clarifies the impact that certain features may have on the accuracy.
We are able to reduce the features set of the top 14 features selected in Sect.5
even further to six characteristics retaining a significant portion of our original
accuracy (78% with only 5 modulus characteristics). The description of the top
features are provided in Table 8.

If we focus our attention on the size of the data set being used, our analysis
reveals that most classifiers perform consistently well across different sample
sizes that have at least with 1000 keys (Fig.3), but seems to perform poorly
with sample sizes that have less then 1000 keys, resulting in significant loss of
accuracy that is proportional to the size of the sample.

The results of more granular experiments, i.e., attribution to a source library
and its version are given in Table9. In most cases, we are able to attribute keys
to their originating library and its version. The performances ranges between
68% to 100% attribution accuracy. The performance is generally lower for
libraries/versions with fewer keys which is expected due to lack of sufficient data.
For example, in cases of FTP server and Reflection, we were not able to produce
any attribution due to very small amount of collected keys (3 and 1, respectively).

It is interesting that although we were not able to obtain any information
for ‘Unknown’ libraries or versions, they seem to clearly represent homogeneous
groups with distinct patterns. For example, we achieved 89% accuracy in clas-
sifying ‘Unknown’ library with ‘Unknown’ version. Similarly, non-existent 12.x
version of OpenSSH library can be very accurately traced (100% accuracy) to
individual keys.

Note that this attribution is based solely on the key’s modulus technical
characteristics that are independent of library version, patch level, type of kernel
used, or hardware platform.

390 E. Branca et al.

%\ + : : : =]
0.8 0.8
S 0.6 —e— GaussianNB :\; 0.6 —e— GaussianNB
; - = Neural-Net ‘; — Neural-Net
9 —m DecisionTree O = DecisionTree
© —e— Logistic-Regression © —e— Logistic-Regression
8 —¥— RandomForest 3 0 4 —%— RandomForest
o 0.4 —< LinearDiscriminant o —— LinearDiscriminant
< <
0.2 \A\\/ 0.2
0.0
100 1000 5000 10000 50000 100000191,976 100 1000 5000 10000 50000 100000191,976
Key Set Size Key Set Size
(a) All features (b) Numerical features
0.8 E 0.8 77&’;—&
06 —e GaussianNB o6 —e— GaussianNB
‘; =~ Neural-Net ; =~ Neural-Net
Z —a- DecisionTree 2 —a— DecisionTree
© —e— Logistic-Regression © —e— Logistic-Regression
304 —+— RandomForest 304 —+— RandomForest
O —<— LinearDiscriminant o —<— LinearDiscriminant
< <
0.2 0.2 i
0.0 0.0
100 1000 5000 10000 50000 100000191,976 100 1000 5000 10000 50000 100000191,976
Key Set Size Key Set Size
(¢) Textual features (d) Protocol-related features
0.8 0.8 ;
S 0.6 —e— GaussianNB 206 —e— GaussianNB
e —¢ Neural-Net g — Neural-Net
b —m— DecisionTree 3 —m— DecisionTree
o —e— Logistic-Regression © —e— Logistic-Regression
204 —v— RandomForest 204 —v— RandomForest
o —< LinearDiscriminant [v] —<— LinearDiscriminant
< <
0.2 0.2
0.0 0.0
" 100 1000 5000 10000 50000 100000191,976 100 1000 5000 10000 50000 100000191,976

Key Set Size Key Set Size

(e) Protocol-related and numerical features (f) Protocol-related and textual features

Fig. 3. Attribution accuracy of collected keys by individual library

7 Discussion

Fine-grained attribution of keys to their specific library versions has direct
practical implications. Tracing an individual key to an exact version of the
cryptographic library that produced it extends our ability to accurately finger-
print cryptographic libraries employed by remote parties, which in turn, under-
mines security of these systems. Knowledge of a specific library version can

Origin Attribution of RSA Public Keys 391

Table 9. Attribution results for the collected SSH keys by the individual library and
its version (Random Forest)

Library* Version | Accuracy | Number of | Library* |Version |Accuracy|Number of
keys keys
Dropbear |0.x 100% 83 NetVanta |4.x 0% 2
Dropbear |2011.x 100% 222 OpenSSH | 3.x 78% 503
Dropbear |2012.x 87% 16,521 OpenSSH |4.x 99% 4,484
Dropbear |2013.x 100% 220 OpenSSH |5.x 91% 23,279
Dropbear |2014.x 98% 1,212 OpenSSH | 6.x 98% 25,564
Dropbear |2015.x 98% 538 OpenSSH | 7.x 79% 99,564
Dropbear |2016.x 98% 2,854 OpenSSH |8.x 82% 1,535
Dropbear | 2017.x 100% 236 OpenSSH |12.x 100% 89
Dropbear |2018.x 91% 143 OpenSSH | Unknown | 100% 89
Dropbear |2019.x 100% 146 Reflection | 7.x 0% 1
Dropbear |Unknown| 68% 5,776 iLO 0.x 100% 34
FTP Server|3.x 0% 3 Unknown | Unknown| 89% 8,787

* As announced in the the SSH banners.

simplify targeted and library-specific attacks. For example, such detailed knowl-
edge would also disclose the technical capabilities of a library in terms of key
validation and signing. With this information, an attacker can craft a certifi-
cate with characteristics that would result in the acceptance of such certificate
as valid instead of it be recognized as forged or malicious (e.g., prefix-collision
attacks [25]).

Similarly, an attacker could provide certificate details that would trigger spe-
cific bugs in the library parsing routines. Such attack would potentially result in
the execution of arbitrary code and in privilege escalation and pivoting attacks,
where the cryptographic library is effectively executing code on behalf of a mali-
cious attacker.

The presence of predictable patterns in keys can be also leveraged to expedite
the factorization process, effectively undermining the security of this key. Several
studies offered heuristics for key factorization in situation when certain bits are
set [14]. Another application of this research is finding more information about
the type of ransomware [15]

Mitigation of key attribution is challenging at this point. Our results seem
to point out that the logic or structure of cryptographic primitives implemented
in the libraries are the main cause of the distinct bit patterns in keys. As a
result, all keys produced by an identifiable library version will be bound to the
same distinct patterns and only modification of library’s code can help address
them. One potential solution is analysis of quality generated keys. Typically,
the output of cryptographic applications is judged by their ability to produce

392 E. Branca et al.

random or pseudo random sequences. As we showed in this work, these tests do
not necessarily recognize the presence of unique patterns, and thus do not fully
address the quality of a generated key.

8 Conclusion

Assessing the characteristics of the cryptographic key material in RSA keys
through the use of machine learning techniques has allowed us to identify a
series of potentially significant aspects of RSA key that are directly linked to
the level of security of RSA keys.

The general expectation of cryptographic keys requires the produced key not
bear any signs of the originating library. Yet, we have been able to positively
associate a percentage of the collected RSA keys not only to a specific library
but more worryingly to a specific version of such library.

We generated 6,767,078 keys with different cryptographic libraries, different
versions and on different platform. We were able to attribute the keys moduli
to the library with an average of 75% accuracy and its version with an aver-
age accuracy of 85%. We have been able to find features that can discriminate
between keys generated by different libraries, between keys with different major,
minor, build and in some case patch versions. For example, we obtained 76% for
GPG 2.0.x version and 98% for GPG 2.1.x version.

In the second round of experiments, we collected 191,976 SSH keys from the
Internet. We used six classifiers to analyze the collected keys. Results show that,
our approach can attribute individual keys to specific library versions with 68%
to 100% accuracy, without any prior knowledge on the system or the library that
generated them.

The significance of our work lies in the fact that we can accurately perform
attribution of a number of valid, standard-compliant cryptographic keys, both
generated and collected from random sources from the Internet. We have eval-
uated a large number of libraries that span more than a decade, and we found
recognizable patterns in every library, regardless of which year the library was
published, its patch level, and what is important, its release date. We have been
able to perform attribution based solely on the key’s modulus technical charac-
teristics that are independent of version, patch level, version of OS, type of kernel
used, or class of Linux distribution used for the tests or hardware platform.

9 Appendix

See Table 10.

Origin Attribution of RSA Public Keys 393

Table 10. The top 14 features extracted for attribution of generated and collected

keys

Feature Feature type | Description

Shannon entropy Numerical The Shannon Entropy of a RSA modulus

Brotli compression Numerical Percentage of compression using the Brotli
algorithm for text compression

LZMA compression Numerical Percentage of compression using the LZMA
algorithm for text compression

Offset Numerical Cutoff value for moduli of keys that are
generated with standard logic

Bin Numerical Which bin, between the range of 1 and 100,
the value of n falls in

Longest repeated String Longest repeated substring pattern within

substring (LRS) each string representation of a modulus

LRS position String Index positions in which LRS pattern is
present within each string representation of
a modulus

Zeroes position String Index positions in which the continuous
zeroes are present within each string
representation of a modulus (list)

Ones position String Index positions in which the continuous
ones are present within each string
representation of a modulus

MSB - LSB pattern String The first n bits found in the first half of the
modulus string are equal to the last n bits
in the second half of the string

Mirror pattern String The n bits found in the first half of the
modulus string are equal to n bits in the
second half of the string (regardless of their
position)

Mirror position String Index positions of mirror pattern

Mirror all patterns String The first MSB n bits found in the remaining
string of the modulus (regardless of their
position)

Mirror all positions String Index positions of mirror all patterns

References

1. Acar, Y., et al.: Comparing the usability of cryptographic apis. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 154-171 (2017)

2. Acer, M.E., et al.: Where the wild warnings are: Root causes of chrome https cer-
tificate errors. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, pp. 1407-1420. ACM, New York (2017)

3. Aly, M.: Survey on multiclass classification methods. Neural Netw. 19, 1-9 (2005)

394

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E. Branca et al.

Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R., Simon, S.: Rec-
ommendation for pair-wise key establishment using integer factorization cryp-
tography. Tech. rep., National Institute of Standards and Technology, Gaithers-
burg (2019). DOI: https://doi.org/10.6028 /NIST.SP.800-56Br2, https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800- 56 Br2.pdf

. Bassham, L.E., et al.: Sp 800—22 rev. la. a statistical test suite for random and pseu-

dorandom number generators for cryptographic applications. Tech. rep., Gaithers-
burg (2010)

Bayes, T.: LII. an essay towards solving a problem in the doctrine of chances. by
the late rev. Mr. Bayes, FRS communicated by Mr. price, in a letter to john canton,
AMFR 8. Philos. Trans. R. Soc. Lond. 53, 370-418 (1763)

Breiman, L., Friedman, J.H., Stone, C.J., Olshen, R.A.: Classification and Regres-
sion Trees. Wadsworth International Group, Franklin (1984)

Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC 2014, pp. 95-110. USENIX Association, Berkeley
2014

(Cox7])).R., Snell, E.J.: Analysis of Binary Data, vol. 32. CRC Press, Boca Raton
(1989)

Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the https cer-
tificate ecosystem. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, IMC 2013, pp. 291-304. ACM, New York (2013)

Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, IMC 2014, pp. 475-488. ACM, New
York (2014)

Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS 2013, pp. 73-84. Asso-
ciation for Computing Machinery, New York (2013)

Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-random

numbers in virtualized linux and the whirlwind rng. In: 2014 IEEE Symposium on
Security and Privacy, pp. 559-574, May 2014

Faugere, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-

nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,

vol. 6056, pp. 70-87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13013-7_5

Fernando, D.W., Komninos, N., Chen, T.: A study on the evolution of ransomware

detection using machine learning and deep learning techniques. IoT 1(2), 551-604
2020

é‘rasse)r7 O., Holz, R., Carle, G.: A deeper understanding of SSH: Results from
internet-wide scans. In: 2014 IEEE Network Operations and Management Sympo-

sium (NOMS), pp. 1-9, May 2014

Hastings, M., Fried, J., Heninger, N.: Weak keys remain widespread in network

devices. In: Proceedings of the 2016 Internet Measurement Conference, IMC 2016,

pp. 49-63. ACM, New York (2016)

Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your PS and
QS: detection of widespread weak keys in network devices. In: Proceedings of 21st

USENIX Security Symposium (USENIX Security 12), pp. 205-220. USENIX, Belle-

vue (2012)

Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference

on Document Analysis and Recognition, vol. 1, pp. 278-282. IEEE (1995)

https://doi.org/10.6028/NIST.SP.800-56Br2,
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://doi.org/10.1007/978-3-642-13013-7_5
https://doi.org/10.1007/978-3-642-13013-7_5

20.

21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Origin Attribution of RSA Public Keys 395

Hurley-Smith, D., Hernandez-Castro, J.: Great expectations: a critique of current
approaches to random number generation testing & certification. In: Cremers, C.,
Lehmann, A. (eds.) Sec. Standardisation Res., pp. 143—-163. Springer International
Publishing, Cham (2018)

IETF: Brotli compressed data format. https://tools.ietf.org/html/rfc7932
Lachenbruch, P.A., Goldstein, M.: Discriminant analysis. Biometrics 69-85 (1979)
Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software
fail? a case study and open problems. In: Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys 2014. Association for Computing Machinery, New York (2014)
Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. IACR Cryptol. ePrint Arch. 2012, 64 (2012)
Leurent, G., Peyrin, T.: Sha-1 is a shambles: First chosen-prefix collision on sha-
1 and application to the PGP web of trust. In: 29th USENIX Security Sympo-
sium (USENIX Security 20), pp. 1839-1856. USENIX Association, August 2020.
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent

Li, J., Lin, Z., Caballero, J., Zhang, Y., Gu, D.: K-hunt: pinpointing insecure cryp-
tographic keys from execution traces. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, pp. 412-425.
ACM, New York (2018)

Li, Y., Zhang, Y., Li, J., Gu, D.: iCryptoTracer: dynamic analysis on misuse of
cryptography functions in iOS applications. In: Au, M.H., Carminati, B., Kuo,
C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 349-362. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11698-3_27

McCulloch, W.S.; Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115-133 (1943)

Muslukhov, I., Boshmaf, Y., Beznosov, K.: Source attribution of cryptographic api
misuse in android applications. In: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, ASTACCS 2018, pp. 133—-146. Association
for Computing Machinery, New York (2018)

Nadi, S., Kriiger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do java
developers struggle with cryptography apis? In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 2016, pp. 935-946. Association
for Computing Machinery, New York (2016)

Nemec, M., Klinec, D., Svenda, P., Sekan, P., Matyas, V.: Measuring popularity of
cryptographic libraries in internet-wide scans. In: Proceedings of the 33rd Annual
Computer Security Applications Conference, ACSAC 2017, pp. 162-175. ACM,
New York (2017)

OpenSSL: Bn_generate_prime (2021). https://www.openssl.org/docs/manl.1.1/
man3/BN_generate_prime.html

Piccolboni, L., Di Guglielmo, G., Carloni, L.P., Sethumadhavan, S.: Crylogger:
Detecting crypto misuses dynamically. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P). IEEE (2021)

Python: The Lempel-Ziv—Markov chain (LZMA) compression algorithm. https://
docs.python.org/3/library /lzma.html

Rahaman, S., et al.: Cryptoguard: high precision detection of cryptographic vulner-
abilities in massive-sized java projects. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, pp. 2455-2472.
Association for Computing Machinery, New York (2019)

Seznec, A., Sendrier, N.: Havege: a user-level software heuristic for generating
empirically strong random numbers. ACM Trans. Model. Comput. Simul. 13(4),
334-346 (2003)

https://tools.ietf.org/html/rfc7932
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent
https://doi.org/10.1007/978-3-319-11698-3_27
https://www.openssl.org/docs/man1.1.1/man3/BN_generate_prime.html
https://www.openssl.org/docs/man1.1.1/man3/BN_generate_prime.html
https://docs.python.org/3/library/lzma.html
https://docs.python.org/3/library/lzma.html

396 E. Branca et al.

37. Svenda, P., et al.: The million-key question—investigating the origins of RSA public
keys. In: Proceedings of 25th USENIX Security Symposium (USENIX Security 16),
pp- 893-910. USENIX Association, Austin, August 2016

38. ubld.it: TrueRNG. https://hackaday.io/project/630-truerng

39. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 debian openssl vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, IMC 2009, pp.
15-27. Association for Computing Machinery, New York (2009)

40. Yutaka, N.: NeuG: a true random number generator implementation. Tech. rep.
(2015)

https://hackaday.io/project/630-truerng

	Origin Attribution of RSA Public Keys
	1 Introduction
	2 Related Work
	3 Background
	4 Analysis Methodology
	4.1 RSA Keys Generation and Parsing
	4.2 Key Analysis and Representation
	4.3 Classification

	5 Attribution Results
	6 Internet Scan of IPv4 Hosts
	6.1 Collected Data
	6.2 Source Attribution

	7 Discussion
	8 Conclusion
	9 Appendix
	References

