
Android authorship attribution through string analysis
Vaibhavi Kalgutkar

University of New
Brunswick

Fredericton, Canada
vkalgutk@unb.ca

Natalia Stakhanova
University of New

Brunswick
Fredericton, Canada

natalia.stakhanova@unb.ca

Paul Cook
University of New

Brunswick
Fredericton, Canada
paul.cook@unb.ca

Alina Matyukhina
University of New

Brunswick
Fredericton, Canada
amatyukh@unb.ca

ABSTRACT
With the rising popularity of Android mobile devices, the amount of
malicious applications targeting the Android platform has been in-
creasing tremendously. To mitigate the risk of malicious apps, there
is a need for an automated system to detect these applications. Cur-
rent detection techniques rely on the signatures of well-documented
malware, and hence may not be able to detect newmalware samples.
Instead of generating signatures for malware samples themselves,
in this work, we propose to develop a lightweight system that can
generate signatures of malware writers by leveraging the string
components present in their Android binaries. Using these author
signatures, we can effectively detect a wide range of existing, as
well as any new, malware samples generated by particular authors.
The proposed system achieved 98%, 96%, and 71% accuracy over
datasets of 1559 benign, 262 malicious, and 96 obfuscated Android
applications, respectively. The string-based approach achieved 71%
of accuracy compared to only 50% obtained with the existing Ding
and Samadzadeh’s system.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
Android, Authorship attribution, Mobile malware, String analysis,
Obfuscation

ACM Reference Format:
Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina.
2018. Android authorship attribution through string analysis. In ARES 2018:
International Conference on Availability, Reliability and Security, August 27–
30, 2018, Hamburg, Germany. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3230833.3230849

1 INTRODUCTION
The rapid expansion of Android market attracted an unwanted
attention of underground community. The openness of the Android
platform and lack of security checks in the application distribution
process have resulted in an increasing number of malicious appli-
cations targeting the Android platform. An estimated 99% of all

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00
https://doi.org/10.1145/3230833.3230849

existing mobile malware target Android devices [15]. On average
anti malware companies see over 8000 novel Android malware
samples daily [21].

Based primarily on signatures, i.e., brief and precise rules used to
identify malicious behaviour, the anti-malware solutions struggle
to keep pace with these unprecedented malware numbers. These
signature-based solutions are typically precise, yet unable to spot
new malware attacks and require time-consuming human expertise
to be assembled for each malware family. To address these gaps,
a wide range of malware detection techniques were introduced.
The majority of these approaches are based on either the analysis
of complex features extracted from the files present in Android
executables (e.g., DroidSafe [14]) or dynamic features derived from
an app's behaviour during runtime. Extraction of such complex
features is a tedious task and requires a considerable amount of
time and system resources. With rapid increase in the amount and
complexity of malware, it is beneficial to employ methods that do
not rely on analysis of complex features and are time efficient.

In this work, we offer an alternative solution. Instead of focusing
on individual malware samples, we propose to turn our attention to
malware developers. The benefit of this strategy is clear: generating
a signature for malware developer rather than individual malware
sample, we can effectively characterise all malware samples gener-
ated by a particular software developer. The primary premise for
our work stems from authorship attribution field, typically used in
literary domain. Author attribution domain assumes that each au-
thor possesses a unique writing style which can accurately identify
his works among others. Our hypothesis is that a developer similar
to an author has a unique programming style which is reflected
through the various components of programs developed by him.
By analysing such program components, we can possibly gener-
ate the author’s signature that can uniquely identify applications
developed by that author. One of the simplest components that
can represent an author’s writing style is a set of strings used by
a developer throughout binary code. Various string components
such as variables, class names, method names, and string literals
reflect the writing preferences of the developer.

We present an approach to identify an author of an given An-
droid application using the author's signature (profile) comprised
of different string components that can potentially reflect the An-
droid author's style. Within our analysis we study different types of
strings extracted from Android binary code and Android meta-data.
Using these extracted strings, we further generate author profiles
by selecting the most frequent word n-grams. N -gram analysis has
been used successfully in a variety of research domains including
software similarity detection, malware detection, and authorship
attribution in the literary as well as the software domain. Due to

1

https://doi.org/10.1145/3230833.3230849
https://doi.org/10.1145/3230833.3230849
https://doi.org/10.1145/3230833.3230849

ARES 2018, August 27–30, 2018, Hamburg, Germany Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina

their advantages, we employ the n-grams technique to analyse the
impact of various strings on an Android authorship attribution.

The authorship attribution in software is associated with many
challenges including lack of labelled author data (not to mentioned
malware author data). To address this problem we collect Android
application both benign and malicious, verify and label them ac-
cording to their author.

The task of identifying malicious applications is becoming more
challenging as code obfuscation in the mobile domain is gaining
popularity in both legitimate and malware applications. The goal of
obfuscation is to transform original code to disguise its appearance
and to protect it from reverse engineering analysis. We also analyze
the robustness of our approach in the presence of obfuscation.
To this end we create an author dataset with obfuscated Android
applications. The proposed system is able to identify the authors
of benign, malicious, and obfuscated Android applications with an
accuracy of 98%, 96%, and 71% respectively. We also compare our
approach to author attribution system proposed earlier by Ding
and Samadzadeh [9]. Using the proposed string-based approach, we
are able to achieve 71% of accuracy compared to only 50% obtained
with the Ding and Samadzadeh’s system [9].

2 RELATEDWORK
Many of the research studies have provided an overview of mobile
malware characteristics, analysis and detection techniques [28]. The
existing Android malware analysis studies can be classified into
two categories: static analysis based on the features extracted from
the application binary [5, 12, 14, 31] and dynamic analysis based
on the features derived from an application's runtime behaviour [7,
10, 30, 32].

In contrast to the previous systems based on the analysis of mal-
ware samples themselves, we propose a system to detect the mali-
cious Android applications by analysing their authors. Authorship
attribution aims to solve such a problem. Authorship attribution in
the literary domain has been widely studied since the 19th century.
In software domain author attribution is fairly new. Its initial appli-
cation was in plagiarism detection area where researchers started
to examine authors’ programming styles based on the analysis of
various code components [22].

As the software authorship attribution field evolved, a number
of studies started to apply the attribution techniques in other do-
mains including intrusion analysis. Spafford and Weeber proposed
to utilize features extracted from code and the remnants of software
to identify a potential adversary [27]. They defined this technique
as software forensics. Later on, Krsul highlighted the effectiveness
of authorship analysis to enhance real-time intrusion detection sys-
tems [19]. Traditional software authorship attribution studies were
based on the selection of the set of feature metrics to represent the
author's style, followed by the classification method to discriminate
the authors. The researchers studied a range of features such as
number of operators, operands, spaces, keywords, etc [22]. How-
ever, most of these proposed metrics were programming language
dependent. Moreover, the selection of the metrics was a crucial task.
This led to the development of new techniques such as the n-gram
analysis in the attribution field.

The performance of n-grams in the software attribution field
was first evaluated by Frantzeskou et al. [11]. Frantzeskou et al.
presented a novel system to generate the author profiles by ex-
tracting the most frequent byte level n-grams from the source code
samples. This promising method known as the source code author
profiles approach (SCAP) was previously evaluated successfully
for literary authorship attribution by Keselj et al. [16]. The system
was programming language independent and can be seamlessly ap-
plied for the attribution of source code written in any programming
language. The system performed surprisingly well even with the
limited amount of code samples per author and even in the absence
of comments. The study attracted the attention of the research
community and underlined the effectiveness of n-grams to repre-
sent the author's programming style.Function words such as ‘the’,
‘but’, ‘and’, and ‘or’ have been used extensively in the literary au-
thorship attribution domain as strong markers of an author's style.
Based on a similar hypothesis, Burrows and Tahaghoghi presented
an efficient system to generate the author fingerprints/profiles by
leveraging n-grams of function words, i.e., keywords and operators
from the source code samples. Later, Kothari et al. evaluated the
performance of character based n-grams and other stylistic and
layout based features for the attribution task [18].

In 2014, Burrows et al. compared the different source code au-
thorship attribution techniques [8]. The study confirmed the effec-
tiveness of n-gram analysis as presented in the SCAP method [11]
for the source code attribution task. The n-gram analysis tech-
nique proved to be effective for similar research problems as well.
Layton et al. extended the byte level n-grams to analyse phishing
websites with an authorship perspective [20]. In another study,
researchers evaluated the performance of byte n-grams for com-
puter virus detection [26]. As the field of authorship attribution
evolved, researchers studied a variety of string-based features such
as keywords, operators, operands, variables and function names to
quantify authors' styles. In this work, we further investigate the im-
pact of strings extracted from Android binary code and meta-data
on authorship attribution.

3 STRING-BASED ANALYSIS
An Android application package file (APK) contains a variety of
files including an executable file also known as a DEX file. It con-
tains compiled Android classes in .dex format for Android Runtime.
The DEX file is partitioned into a number of sections such as a
header section followed by several identifier lists such as string,
type descriptors, prototype, field, method, class definitions and
a data section containing the actual implementation data. Every
element defined in the identifier list sections maintains the off-
set pointing to the corresponding entries in the data section. For
example, the string identifier list section maintains offsets of all
types of strings used in the DEX file. The string offset points to
the location in the data section where the string has been used.
Other identifiers sections such as type ids, prototype ids, field ids,
method ids, and class defs, also maintain the list of offsets pointing
to the data section where the identifiers have been actually used.
However, other than maintaining references to the data section,
these sections also contain references to the string identifier list.
For example, a class named AccountActivity will have a reference to

2

Android authorship attribution through string analysis ARES 2018, August 27–30, 2018, Hamburg, Germany

Table 1: Summary of different types of strings analysed

String type Description

Unreferenced Strings referenced only by the string
identifier list of the DEX file

DEX All the strings components present in
the DEX file

Application Strings extracted from the strings.xml
file

All All the types of strings combined to-
gether

the class data in the data section as well as a reference to the actual
string AccountActivity defined in the string identifier section.

Although Android application development should follow the
specifications and guidelines stated by the official Android Develop-
ment community, malware writers often violate these specifications
to include malicious code inside the Android application. One of
the approaches is to hide the malicious code by placing it in the
data section of the DEX file while avoiding it being referenced
by elements of the identifiers sections such as class ids or method
ids [2, 3]. The identifier lists in the DEX files are typically used to in-
voke the various methods and classes and are useful for analysing
the workflow of the application. However, the code hiding tech-
nique prevents the reverse engineering of an application, making
it difficult to recognize malicious functionality.

Strings used in such hidden code do not have references to iden-
tifier sections other than the string ids list. Thus, we differentiate
the strings present in the data section of the DEX file as the ‘refer-
enced strings’ and the ‘unreferenced strings’. The referenced strings
have a reference to the identifier list other than the string offset list,
whereas the unreferenced strings are referred to only by the string
identifier list. The referenced strings represent classes, methods,
or different data types in the application depending on the type
of the identifier list referring to them. Thus, these strings form a
part of the functional, executable code of the application. On the
other hand, the Unreferenced strings are only referenced by the
string offset list. These strings can contain hidden, interesting or
malicious code details. For example, malware writers often use hard
coded URLs, email addresses, and malicious code samples in the
form of strings in malware applications. Thus, analysis of such
hidden unreferenced strings can reveal malicious activity embed-
ded in Android applications. We therefore analyse unreferenced
strings found within the DEX file of the Android application. We
also analyse the impact of all the DEX strings components, i.e.,
by combining both unreferenced and referenced strings for the
authorship attribution task.

Other than the DEX strings present in the DEX file, an APK
contains another source of string components, i.e., the XML re-
source file ‘strings.xml’. Theoretically, it should provide a list of all
the strings that can be referenced within the application source
code or from other resource files of the application [25]. However,
Android developers may choose what strings to define there and
even whether or not to define any at all. As a result ‘strings.xml’

might be a curated version of what a developer wants users to know
about his application.

These author-defined strings can be a strong style marker de-
noting the author's writing style and pattern. We refer to strings
present in strings.xml file as the Application strings. We examine
the author style based on these strings as well.

Thus, we evaluate the performance of unreferenced, DEX, ap-
plication, and All strings (i.e., by considering all types of strings
together) for the task of identifying the author of Android applica-
tions. Table 1 summarises types of strings used for the analysis.

4 AUTHOR ATTRIBUTION SYSTEM
The overall flow of the proposed system is depicted in Figure 1.
Given an Android application to be attributed to an author profile,
our system first extracts different types of strings from the Android
APK, then generates string n-grams, and then forms feature vectors.
This feature vector is then compared to existing author profiles
(generated earlier) to predict a potential author. Each of this steps
is explained in more details in the following sections.

Figure 1: The flow of the proposed system

4.0.1 String Extraction. The attribution system first unpacks
every APK under the analysis. To analyse the DEX strings, the sys-
tem first extracts all the classes.dex files from the unpacked APK,
and then traverse the string ids list to extract all the strings refer-
enced by the list. However, to analyse only the Unreferenced strings
present in data section of the DEX file, the system further discards
the referenced strings from the set of DEX strings by traversing the
other identifier lists, i.e., type, prototype, field, method, and class
lists. For the extraction of Application strings, the system extracts
strings.xml from the unpacked APK. The system then parses this
strings.xml file to extract the strings defined by the attribute ‘name’
of the XML ‘string’ elements. In the case of All strings analysis, all
types of strings contribute to the final string data. All the extracted
strings form the basis for the string n-grams analysis.

4.0.2 Feature generation. The system employs word level string
n-grams derived from the extracted strings as features for the au-
thor classification task using sliding window techniques. Word level
n-grams can be viewed as a sequence of nwords combined together
from a given sentence or text. During the feature generation step,
the system generates the list of extracted strings in lexicographical
order and outputs each extracted string on a separate line. The
word level n-grams are generated by combining the words from a
string on every line. This is done in order to generate line bounded
n-grams. The advantage of line bounded n-gram is that it does not
contain words from different lines. As strings on different lines

3

ARES 2018, August 27–30, 2018, Hamburg, Germany Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina

Table 2: String n-grams feature examples

1-grams 2-grams 3-grams 4-grams
mSet= <LB>mSet=

mSet=<LB>
<LB>mSet=<LB>

Value
must
not
be
null

<LB>Value
Value must
must not
not be
be null
null<LB>

<LB>Value must
Value must not
must not be
not be null
be null<LB>

<LB>Value must not
Value must not be
must not be null
not be null<LB>

are not necessarily associated, combining the words belonging to
different lines would have resulted in the generation of n-grams
containing words that are not a part of a single string, therefore
generating n-grams exhibiting meaningless semantics. While gen-
erating line bounded word n-grams, the system ignores a line if it
represents a string with less than n words. This can cause a loss of
the information. Thus, the system augments each extracted string
with a unique line boundary token at the start and end of the string
before extracting n-grams. The addition of line boundary tokens
ensures that every line contains at least 3 words including the line
boundary tokens. Thus, more features are available to represent an
author's style.

The line boundary tokens also give information about the context
of the first and the last word. This can provide crucial information
for example, a string beginning with words like Error orWarning
can mean something different than a string containing such words
elsewhere. Line boundary tokens are not added for generating uni-
grams (1-grams) as uni-grams represent only a single word.

Table 2 demonstrates the n-gram features generated from two
strings —mSet= and Value must not be null. From the table it is clear
that there are no line boundary tokens (<LB>) added for the 1-gram
features. Also, in the case of a string containing only a single word
(e.g., mSet=), there is no 4-gram feature available as even with line
boundary tokens the given string contains only 3 words.
The generated word level n-gram features are further used to form
feature vectors.

4.0.3 Feature vector generation. The system produces the nu-
merical representation of the generated n-gram features in the form
of a vector suitable for machine learning classification. In the fea-
ture vector generation process, the system calculates frequencies
of extracted word n-grams to represent each APK under analysis in
the form of a frequency vector. Every element in the feature vector
represents the number of times a particular n-gram occurs in a
given APK. For example, consider the following strings extracted
from an APK:
• Cookie value must not be null
• Cookie name must not be empty

This APK will results in 11 unique word level 3-gram features, i.e.,
[<LB> Cookie value, Cookie value must, value must not, must not
be, not be null, be null <LB>, <LB> Cookie name, Cookie name
must, name must not, not be empty, be empty <LB>] which can be
represented in the form of frequency vector as:

v = [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]

Here, each element in the vector represents the frequency of the cor-
responding n-gram feature. The system generates feature vectors
for every Android application of each author. However, different
applications can have different n-gram features which can lead
to feature vectors having different sizes. We transform frequency
vectors into a common and consistent feature space using count vec-
torization technique that creates vectors with all unique sequence
of n-gram features extracted from all the applications in the dataset
and their corresponding frequency. In this case the generated fea-
ture vectors are sparse, i.e., contain elements with zero frequencies.
To remove inefficiency, we employ sparse matrix approach imple-
mented by Python skit-learn library that only retains non-zero
occurrences.

4.0.4 APK classification. Our Android attribution system em-
ploys feature vectors generated in the previous stage as input data
for the supervised classifier. To generate a profile for a known au-
thor several APKs, i.e., several feature vectors representing these
APKs, are analyzed by our system. The system trains the super-
vised machine learning classifier in order to produce the unified
profiles for each of the authors in the dataset. Using these inferred
author profiles, this trained classifier model can then predict the
authorship of any unknown Android application.

We selected support vector machine (SVM) as the supervised
classifier for our system. The support vector machine classifier is
one of the robust classifiers [1] and has successfully been applied
in attribution domain [6]. It has also been successfully used for An-
droid malware family classification and gave the best performance
among a wide range of machine learning classifiers [17]. Thus, here
we present results with SVM classifier.

5 DATA
The availability of a dataset (i.e., a labelled set of Android develop-
ers with their Android application samples) is a major challenge
for any authorship attribution study. There are no standard open
benchmark datasets available in this domain. Thus, we created three
new datasets of Android samples belonging to different authors —
benign authors dataset, malware authors dataset, and obfuscated
application dataset — which we use for evaluation.

5.0.1 Benign application dataset. According to the specification
stated by the official Android community, each Android APK de-
veloper needs to digitally sign the APK with a certificate which
contains the information that uniquely identifies the developer of
the APK, such as the public key. The developer possesses the corre-
sponding private key for the public-key certificate. [24]. We used
the certificates attached to the Android application to collect the
samples belonging to the same author. APKs having the same certifi-
cates are considered to be coming from the same author/developer.
While Android developers can generate different certificates to sign
each new APK, we do not consider this case and follow a more
conservative approach to ensure that we have ground truth data.

To build the dataset of legitimate authors, we collected more
than ten thousand Android APKs from eight different Android
markets (the official Android market — Google play store, App-
land, Anzhi, Aptoide, MoboMarket, Nduoa, Tencent, Xiaomi). We
grouped these APKs by their certificates. Thus, APKs belonging

4

Android authorship attribution through string analysis ARES 2018, August 27–30, 2018, Hamburg, Germany

to the same author/developer were grouped together. Some certifi-
cates are publicly available and anyone can use them for signing
the APK. Keeping this in mind, we discarded the APKs signed by
such public certificates. We also discarded APKs signed by debug
certificates. We removed duplicate APKs that have been published
in multiple markets. Finally, for our dataset, we considered only au-
thors having more than 20 applications. The final dataset contains
a total of 40 authors with 1559 Android applications.

5.0.2 Malware application dataset. As the authorship informa-
tion of many malware samples is not known, the task of collecting
the malware samples grouped by authors is difficult. However, there
are Android malware research communities that provide a platform
to share malicious Android APKs. We built the malware authors
dataset using ‘koodous’ system which is an open source, collabora-
tive, web based Android malware analysis platform1. We used the
search API provided by the system to search for malicious APKs
with the same certificate. We collected a total of 262 malicious APKs
from 10 different authors with each author having at least 10 unique
malicious APKs. The malicious nature of APKs was also verified by
VirusTotal platform.

5.0.3 Obfuscated application dataset. Due to a wide range of
advantages, Android obfuscation is gaining popularity among both
legitimate as well as malware writers. As obfuscation affects the
underlying APK, it is important to test its impact on our analysis.
However, collecting obfuscated Android APKs is a challenging task.

There are research studies focusing on the detection of the type
of obfuscation used in Android binaries [4, 29]. However, none of
the proposed methods is 100% accurate and therefore, we can not
rely on these techniques to identify and collect obfuscated APKs.
We choose to build an obfuscated dataset using Android application
source code. Generating obfuscated APKs from the source code
is beneficial as most of the Android obfuscation tools work at the
source code level.

The open source community ‘GitHub’ is one of the largest col-
laborative platforms which provides the ability to host and share
multiple projects through repositories2. We collected the source
code of Android projects hosted by different Android authors from
GitHub. We used the API provided by GitHub to search for the An-
droid repositories. We then employed different obfuscation tools on
these source code projects to generate the dataset of obfuscated ap-
plications. As GitHub is a collaborative platform, a single repository
can have multiple contributions. Thus, to ensure that a repository
doe not contain code belonging to multiple authors we discarded
the forked repositories and repositories having more than one con-
tributor. We also examined each repository manually to ensure that
it does not contain code to include external repositories during the
application compilation process.

We initially collected more than 255 Android projects from 28
authors. However, many of the projects could not be compiled due
to various reasons e.g., being unable to locate external dependencies
files, compilation errors due to incomplete code or improper project
settings. We discarded authors having very few Android projects as
enough samples are needed to represent the author's style. We were

1https://koodous.com/
2https://github.com/

finally able to collect a total of 96 source code projects belonging to 9
authors. These apps were then obfuscated using 3 popular Android
obfuscation tools — ProGuard, Allatori and DashO. These tools are
considered as a Java class file obfuscator as they obfuscate Java
class files of the Android application which are compiled further
to produce DEX files. ProGuard performs three major steps for
obfuscating the Android APK. Initially, it performs code shrinking
by removing unused code such as unused methods, variables, and
classes followed by Java bytecode optimization. Finally, it performs
name obfuscation, i.e., it obfuscates the code by renaming variables,
classes, methods, and fields to some short random meaningless
words.

Table 3: Obfuscation tools and techniques used for the anal-
ysis

Obfuscation tool Obfuscation Techniques

ProGuard Code shrinking
String obfuscation

Allatori String obfuscation
String encryption
Control flow obfuscation
Optimization

DashO String obfuscation
String encryption
Control flow obfuscation
Optimization

We used the default ProGuard configuration file without any
optimization to generate the obfuscated APKs as it is sufficient for
removing unused code and for obfuscating Android applications.
Like ProGuard, Allatori and DashO have the provision of string
obfuscation. However,they provide features such as string encryp-
tion, control flow obfuscation, and optimization in addition to name
obfuscation by renaming variables. Table 3 summarises the tools
used for the obfuscation. We used the default configuration setting
provided by these tools which has all of these mentioned features
to generate the obfuscated APKs. We used these tools to obfuscate
the 96 Android source code projects cloned from GitHub. Thus,
each Android application project produced one unobfuscated APK
and 3 versions of the obfuscated APKs using the above obfuscation
tools. Table 4 summarises the datasets used for the analysis.

Table 4: Summary of datasets

Dataset Authors Apps Description

Benign 40 1559 Benign applications collected from
8 different Android markets

Malicious 10 262 Malicious applications collected
from Koodous system

Obfuscated 9 96 Collected form GitHub platform.
Each project produced 1 unobfus-
cated and 3 obfuscated APKs using
different obfuscation tools

5

ARES 2018, August 27–30, 2018, Hamburg, Germany Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina

6 EXPERIMENTAL RESULTS AND
DISCUSSION

6.1 Implementation details
We implemented the proposed system in the Python language.
We used various Python modules available in the scikit-learn
library [23]. Another important tool used in our analysis is Droid-
Kin. DroidKin is a lightweight tool used to measure the similarity
between Android applications [13]. It provides similarity scores be-
tween APKs which can be used to detect DEX files having identical
or similar content. We used this similarity score as a threshold value.
We evaluated the system performance over the dataset generated
after discarding all the APKs having equal or greater similarity
score than a specified threshold. Discarding the similar APKs will
lead to reduction of more frequent string n-gram features. Thus,
this analysis can give us the idea of the robustness of our system
over datasets having varied levels of APK similarity.

For evaluation, we adopted a 5-times 5-fold stratified cross val-
idation strategy. To ensure the same set of cross validation folds
were used for experiments with different features (i.e., string types),
we used a random seed. We calculated accuracy, macroaveraged
precision, macroaveraged recall and macroaveraged F1 scores for
evaluating the system performance.

6.2 Preliminary analysis
We conducted a variety of preliminary experiments to examine dif-
ferent parameters for our system. Initially, we analysed the system
performance by changing the size of word n-grams. We observed
the improvement in system performance with increase in size of
n-grams from 1 to 3. However, the system performance degrades
with further increase in size of n-grams. Our system ignores the
strings having less than n terms even after addition of line boundary
tokens. Furthermore, many 4-grams or even higher order n-grams
will be unique leading to data sparsity. Thus, we used 3-grams for
further experiments.
We compared the performance of plain frequency count feature
vectors with that of tf-idf (term frequency and inverse document
frequency) count feature vectors. Tf-idf vectors did not enhance
the system performance; hence, we employed the frequency count
feature vectors for the rest of the experiments.

Traditional malware detection systems analyse features at the
bytecode or opcode level. These are useful for representing the ap-
plication at a low level. Thus, we compared the performance of our
proposed attribution system based on string n-gram features with
bytecode and opcode n-grams features. We evaluated performance
of bytecode n-grams with n ranging from 1 to 2 and opcode n-grams
with n ranging from 1 to 4. The best performance was observed for
2-gram bytecode features and 3-gram opcode features. Thus, we
used these representations for further experiments.

6.3 Benign application dataset results
6.3.1 Comparison of different types of strings. We compared the

performance of our system over four types of strings — Unrefer-
enced strings — strings referenced only by the string identifier list
of the DEX file, DEX strings — all the strings components present
in the DEX file, Application strings — strings extracted from the

Table 5: Performance comparison of different types of fea-
tures over the benign application dataset

Type Accuracy Macro Average
F1

Average Training
Time (Seconds)

All strings 98.19% 97.55% 606.78
DEX strings 98.17% 97.55% 625.30
Unreferenced
strings

97.55% 96.64% 208.81

Application
strings

94.40% 93.10% 5.53

Bytecode 32.15% 28.38% 135.72
Opcode 87.83% 86.92% 272.79

strings.xml file, All strings — all the types of strings combined to-
gether. We also compared the performance of the system using
bytecode and opcode. Table 5 illustrates the performance of the
Android attribution system over the benign application dataset.

As expected All and DEX strings produce the best results as they
preserve the majority of strings found in an APK. Nevertheless,
the training time of the classifier is significantly reduced in the
case of unreferenced and is lowest for application strings. A total of
around 36 million strings are processed in the case of All and DEX
strings which is reduced drastically in the case of unreferenced and
application strings (to around 12 million and 380 thousand strings,
respectively). The system performs quite well even with the lower
number of string components. Results also demonstrated that string
based features are better than bytecode and opcode features.

6.3.2 Effect of APK similarity. For our datasets we only collected
Android APKs with unique MD5 hash value. While this is a com-
mon practice to remove redundant samples, this is not sufficient as
authors commonly repackage their applications adding/modifying
functionality of the code. To understand the impact of code sim-
ilarity on system accuracy, we employed the DroidKin tool that
provides a pairwise similarity score between APKs.

Using this similarity score as a threshold value, we analyse out
data. All the APKs of an author having a similarity score equal
or greater than the specified thresholds are discarded from the
dataset as being too similar to each other. After removing similar
APKs, authors having less than 5 APKs are also discarded, as at
least 5 APKs are needed to perform stratified 5-fold cross validation
experiments and have at least one app from each author in each
fold. The performance of the system over the benign application
dataset at varying similarity thresholds is illustrated in Figure 2.

The results are quite predictable. The system performance gradu-
ally degrades as APK similarity level threshold decreases. Removal
of similar APKs from an author leads to a reduction of frequently ap-
pearing strings, which affects the frequency count of string n-gram
features used to represent the author's style. Another contributing
factor is the decrease in the size of the dataset with every similarity
threshold. Initially, the dataset contains 40 authors with 1559 APKs,
whereas, the dataset with a similarity threshold of 65 contains 20 au-
thors with only 270 APKs. Fewer features are available to represent
an author's style with a lower number of APKs per author. Thus,
the performance of the attribution system is lower on a smaller
dataset. Nonetheless, our system performance is quite promising

6

Android authorship attribution through string analysis ARES 2018, August 27–30, 2018, Hamburg, Germany

Figure 2: APK similarity threshold vs system performance on the benign dataset

even with the small amount of data and lower number of APKs. For
example, even at the similarity threshold of 65%, the system main-
tains an accuracy of around 88% for All and DEX strings; whereas
unreferenced and application strings are able to predict the author
of an unseen APK with an accuracy of 84% and 78%, respectively.

6.4 Malware application dataset results
6.4.1 Comparison of different types of strings. We compared the

performance of our system over various types of strings, bytecode
and opcodes extracted form malicious applications. These results
are shown in table 6. Similar to the performance of different types
of strings over the benign application dataset, in the case of the mal-
ware dataset, the All strings approach performs better than all other
types of strings due to the higher number of strings retained. How-
ever, the unreferenced and application strings provide satisfactory
results even with a smaller amount of strings and lower training
time. Although application strings show comparable results, this
string set is the least reliable. Application strings are derived form
string.xml file that is fully dependent on a developer intentions
and thus can be carefully curated to only include selected strings.
From this perspective DEX and unreferenced strings are able to
provide more trustworthy author profile. These are the strings that

Table 6: Performance comparison of diffierent types of fea-
tures over the malware application dataset

Type Accuracy Macro Average
F1

Average Training
Time (Seconds)

All strings 96.03% 95.99% 20.80
DEX strings 95.78% 95.78% 21.44
Unreferenced
strings

94.76% 94.70% 8.09

Application
strings

81.63% 82.12% 0.33

Bytecode 37.76% 39.32% 9.36
Opcode 89.20% 89.13% 29.98

are embedded within the code and often unintentionally selected
by a developer.

The system shows better results over the benign application
dataset (discussed in the previous section) than the malware ap-
plication dataset. This is because the malware application dataset
is smaller in size than the benign application dataset. Thus, fewer
samples are available for analysis of a given malware author’s style.
However, even with limited samples, our system produces good
accuracy and demonstrates that it can effectively identify malware

7

ARES 2018, August 27–30, 2018, Hamburg, Germany Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina

writers as well. Bytecode based features perform poorly. Though,
opcodes results are better than bytecode features, it could not out-
perform all, DEX and unreferenced strings approach.

6.4.2 Effect of APK similarity. The results of these experiments
are shown in Figure 3. Results on the malware dataset follow similar
trends to those on the benign application dataset; i.e., performance
of the system degrades with the similarity threshold. However, the
performance is quite volatile due to the small size of the dataset
which is further reduced for the lower values of similarity threshold.
For example, initially the dataset contains 10 authors with 262 APKs.
Even at a similarity threshold of 100% (in this case only APKs having
identical DEX files are removed), 81 APKs are removed from the
original dataset leaving only 181 samples for the analysis. With
every subsequent similarity threshold value, the number of APKs
in the dataset is reduced, making the dataset smaller. Thus, we
observe a few spikes in the performance charts shown in Figure 3.
Nevertheless, even with a small number of samples, our system can
still attribute malware authors. For example, at the 65% similarity
threshold with only 55 APKs and 5 authors available in the dataset,
the system was able to achieve accuracies of around 86% using All
and DEX strings, around 84% for unreferenced strings, and 77% for
application strings.

6.5 Obfuscated application dataset results
We compared the performance of our system over all 3 versions
of the obfuscated dataset, as well as the unobfuscated version of
this dataset. We again compared performance of different types of
strings, bytecodes and opcodes. The results are presented in Table 7.
As shown in the table, without obfuscation, our system is able to
predict the author of an Android binary with an accuracy of almost
71% for All and DEX strings, 70% for unreferenced strings, and 62%
for Application strings.

The experiments performed until now highlighted the correla-
tion between the size of the dataset and system performance. From
the given dataset of only 96 APKs, the system was able to extract
a total of around 1.4 million all strings (this number was around
36 million for the benign dataset and 5.4 million for the malware
dataset). Whereas, in the case of unreferenced strings, this number
dropped to 400k, and for application strings it was only 2689 strings.
The smaller number of strings is a likely reason why the system
was not able achieve accuracy as high as the benign or malware
application datasets. Another factor we must consider is that all
the source code Android projects are downloaded from the GitHub
repository, which is an open source collaborative platform. Even
with all the verifications checks and precautions (discussed in the
section 5.0.3), there is a possibility that a program is written by
multiple authors or contains code components directly copied from
other sources. We also ignored many of the source code projects
for several reasons such as compilation errors, incomplete code
and missing library files. Such excluded projects might contain
important information about an author's writing style but were
not considered in our analysis. All these factors could have led to
the generation of noisy author profiles. Yet, the results are quite
promising, and the system was able to predict authors with an
accuracy of 71%.

In the case of the obfuscated dataset experiments, except for
the application strings, the system performance degrades slightly
in the case of Allatori and moderately in the case of the DashO
obfuscation tool. Obfuscation changes the names of various string
components such as classes, methods, and fields to random strings.
Along with the obfuscation, Allatori and DashO both have the
provision of string encryption. Encryption encodes a given string
to produce a new unreadable string. In both cases, the original
string is converted to a random string. Such random strings are
not informative for the authorship task and can produce noisy
author profiles. Nevertheless, system performance is not affected
significantly for the Allatori and Dasho obfuscated datasets, even
after obfuscation and encryption of string components.

The performance of the ProGuard obfuscation tool is quite inter-
esting. In the case of unreferenced strings, the system performance
is affected slightly as compared to the unobfuscated dataset. This is
not surprising as ProGuard obfuscates various string components
and this affects the classification performance. However, in the case
of All and DEX strings, the ProGuard dataset results are better
than for the unobfuscated dataset. The way in which the ProGuard
obfuscation operates may be the reason of such an unusual perfor-
mance. With the default obfuscation settings, ProGuard extensively
removes various unused code components such as debug informa-
tion and unused code. This is reflected in the number of strings
available for analysis in the ProGuard obfuscated dataset. For ex-
ample, the number of All or DEX strings extracted in the case of all
other datasets except ProGuard (unobfuscated, Allatori, and DashO)
is around 1.4 million. In the case of the ProGuard obfuscated dataset,
this number reduced drastically to only 377k strings. This might
have led to removal of noisy data from the samples, and therefore
focusing on only relevant features representing an author's style.
Unlike unreferenced strings which mostly contain only user-defined
code components, All and DEX strings contain library and third
party classes as well. Hence, removal of redundant information
could have eliminated strings that are not very informative for
authorship analysis. Also, the size of the datasets is rather small
and thus a few different classification predictions can influence
accuracy.
As none of the obfuscation tools used for our analysis obfuscate ap-
plication strings, the system has the same performance for this type
of string over all of the obfuscated and the unobfuscated datasets.

We observed a similar trend for opcodes and bytecodes as for the
benign and malware application dataset. The string based approach
outperforms opcode and bytecode based features.

To study the performance of the system over the obfuscated
datasets with varied levels of APK similarity, APKs having higher
similarity score than the given similarity thresholdmust be removed
from the dataset. Thus, the number of APKs in the dataset is reduced
with the similarity threshold levels. As the number of APKs is
already relatively small (only 96 APKs), this would lead to a very
small dataset, and the results over such a small dataset would not
be very informative. Hence, we did not include this analysis in our
work.

We also compared the performance of our system with the Java
attribution system proposed by Ding and Samadzadeh [9]. This
system extracts 56 features based on layout, style and structure of
the program for attributing Java source code files. We evaluated this

8

Android authorship attribution through string analysis ARES 2018, August 27–30, 2018, Hamburg, Germany

Figure 3: APK similarity threshold vs system performance on the malware dataset

Java attribution system over the Java source code files present in 96
unobfuscated Android applications. The system was able to predict
authors with an accuracy of only 49.68% which is significantly
less than the 71% accuracy achieved with our proposed attribution
system.

7 CONCLUSION
In this work, we presented a lightweight, efficient system to identify
the author of an Android binary by analysing string components
present in the application. Our results showed that we can predict
the author of an Android binary just by analysing string compo-
nents at the binary level.

To the best of our knowledge, this is the first attempt to de-
sign an Android authorship attribution system leveraging string
data within APKs. The system proved to be very efficient as it can
handle many android samples with a relatively low classification
training time. We compared the performance of different types of
string components such as all, DEX, unreferenced and application
strings for the task of Android authorship attribution. In terms of
system accuracy, All and DEX strings outperform unreferenced and
application strings. However, unreferenced and application strings
substantially reduce the number of strings analysed and overall
time required for training the system, while maintaining fairly good
accuracy.

We compared the performance of opcode and bytecode features
with our proposed string approach. Our string based approach
performs better than these techniques. The proposed approach also
outperformed the existing Ding and Samadzadeh’s Java attribution
system.

Another important contribution of our work is the datasets used
for our analysis. In the authorship attribution domain, the lack of
open benchmark datasets is a serious challenge faced by researchers.
We generated 3 different datasets to study benign, malware and
obfuscated Android applications. These datasets will be helpful for
further research in Android authorship attribution.

REFERENCES
[1] Mohamed Aly. 2005. Survey on Multiclass Classification Methods.
[2] A. Apvrille. 2012. Guns and smoke to defeat mobile malware. In Hashdays

Conference..
[3] A. Apvrille. 2013. Playing hide and seek with dalvik executables. In Hacktivity.
[4] Axelle Apvrille and Ruchna Nigam. 2014. Obfuscation in android malware, and

how to fight back. Virus Bulletin (2014), 1–10.
[5] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of An-
droid Malware in Your Pocket.. In NDSS.

[6] Christopher JC Burges. 1998. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery 2, 2 (1998), 121–167.

[7] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
behavior-based malware detection system for android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. ACM,
15–26.

9

ARES 2018, August 27–30, 2018, Hamburg, Germany Vaibhavi Kalgutkar, Natalia Stakhanova, Paul Cook, and Alina Matyukhina

Table 7: Performance comparison of different types of features over the datasets obfuscated with different tools

Obfuscation
Type

Type Accuracy Macro Average F1 Ave. Training Time
(Seconds)

No
obfuscation

All strings 70.68% 64.79% 14.38
DEX strings 70.57% 64.36% 14.26
Unreferenced strings 69.68% 64.37% 4.95
Application strings 62.20% 53.46% 0.02
Bytecode 28.98% 21.51% 2.15
Opcode 61.69% 56.03% 30.79

ProGuard

All strings 76.96% 72.07% 3.68
DEX strings 76.91% 71.94% 3.65
Unreferenced strings 65.52% 59.19% 1.03
Application strings 62.20% 53.46% 0.02
Bytecode 18.57% 11.10% 1.56
Opcode 70.40% 64.41% 16.32

Allatori

All strings 70.00% 63.76% 12.97
DEX strings 69.23% 62.69% 13.02
Unreferenced strings 66.15% 59.84% 4.42
Application strings 62.20% 53.46% 0.02
Bytecode 23.38% 16.40% 2.05
Opcode 62.25% 56.02% 28.85

DashO

All strings 67.44% 60.30% 14.68
DEX strings 67.42% 59.90% 14.66
Unreferenced strings 64.26% 56.46% 5.08
Application strings 62.20% 53.46% 0.02
Bytecode 19.83% 13.45% 22.76
Opcode 60.33% 53.18% 28.22

[8] Steven Burrows, Alexandra L Uitdenbogerd, and Andrew Turpin. 2014. Compar-
ing techniques for authorship attribution of source code. Software: Practice and
Experience 44, 1 (2014), 1–32.

[9] Haibiao Ding and Mansur H Samadzadeh. 2004. Extraction of Java program fin-
gerprints for software authorship identification. Journal of Systems and Software
72, 1 (2004), 49–57.

[10] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[11] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, Carole E Chaski,
and Blake Stephen Howald. 2007. Identifying authorship by byte-level n-grams:
The source code author profile (scap) method. International Journal of Digital
Evidence 6, 1 (2007), 1–18.

[12] Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. 2015. Clapp: Characterizing loops in android applications. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 687–697.

[13] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. 2014. Droidkin: Light-
weight detection of android apps similarity. In International Conference on Security
and Privacy in Communication Systems. Springer, 436–453.

[14] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information Flow Analysis of Android Applications
in DroidSafe.. In NDSS.

[15] AV TEST The Independent IT-Security Institute. 2016. The AV-TEST Security
Report 2015/2016. Technical Report.

[16] Vlado Kešelj, Fuchun Peng, Nick Cercone, and Calvin Thomas. 2003. N-gram-
based author profiles for authorship attribution. In Proceedings of the conference
pacific association for computational linguistics, PACLING, Vol. 3. 255–264.

[17] Stakhanova N Killam R, Cook P. 2016. Android Malware Classification through
Analysis of String Literals. In First Workshop on Text Analytics for Cybersecurity
and Online Safety (TA-COS 2016). European Language Resources Association
(ELRA).

[18] Jay Kothari, Maxim Shevertalov, Edward Stehle, and Spiros Mancoridis. 2007. A
probabilistic approach to source code authorship identification. In Information
Technology, 2007. ITNG’07. Fourth International Conference on. IEEE, 243–248.

[19] Ivan Krsul and Eugene H Spafford. 1997. Authorship analysis: Identifying the
author of a program. Computers & Security 16, 3 (1997), 233–257.

[20] Robert Layton, Paul Watters, and Richard Dazeley. 2010. Automatically deter-
mining phishing campaigns using the uscap methodology. In eCrime Researchers
Summit (eCrime), 2010. IEEE, 1–8.

[21] Christian Lueg. accessed June 16, 2017. 8,400 new Android malware samples
every day. https://www.gdatasoftware.com.

[22] Paul W Oman and Curtis R Cook. 1989. Programming style authorship analysis.
In Proceedings of the 17th conference on ACM Annual Computer Science Conference.
ACM, 320–326.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825–2830.

[24] The Android Open Source Project. accessed July 13, 2017. Publish Your App.
https://developer.android.com/studio/publish/index.html.

[25] The Android Open Source Project. accessed July 13, 2017. String Resources.
https://developer.android.com/guide/topics/resources/string-resource.html.

[26] D Krishna Sandeep Reddy and Arun K Pujari. 2006. N-gram analysis for computer
virus detection. Journal in Computer Virology 2, 3 (2006), 231–239.

[27] Eugene H Spafford and Stephen A Weeber. 1993. Software forensics: Can we
track code to its authors? Computers & Security 12, 6 (1993), 585–595.

[28] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Caval-
laro. 2017. The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR) 49, 4 (2017), 76.

[29] Yan Wang and Atanas Rountev. 2017. Who changed you?: obfuscator identifi-
cation for Android. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems. IEEE Press, 154–164.

[30] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012. Pro-
fileDroid: multi-layer profiling of android applications. In Proceedings of the
18th annual international conference on Mobile computing and networking. ACM,
137–148.

[31] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
2012. Droidmat: Android malware detection through manifest and api calls
tracing. In Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference on.
IEEE, 62–69.

[32] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.. In
USENIX security symposium. 569–584.

10

https://www.gdatasoftware.com
https://developer.android.com/studio/publish/index.html
https://developer.android.com/guide/topics/resources/string-resource.html

	Abstract
	1 Introduction
	2 Related work
	3 String-based analysis
	4 Author attribution system
	5 Data
	6 Experimental results and discussion
	6.1 Implementation details
	6.2 Preliminary analysis
	6.3 Benign application dataset results
	6.4 Malware application dataset results
	6.5 Obfuscated application dataset results

	7 Conclusion
	References

