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Provenance information corresponds to essential metadata that describes the entities, users, and processes involved in the

history and evolution of a data object. While the beneits of tracking provenance information have been widely understood in

a variety of domains, only recently provenance solutions have gained interest in security community. Indeed, on the one

hand, provenance allows for a reliable historical analysis enabling security-related applications such as forensic analysis and

attribution of malicious activity. On the one hand, the unprecedented changes in the threat landscape place demands for

securing provenance information to facilitate its trustworthiness.

With the recent growth of provenance studies in security, in this work, we examine the role of data provenance in security

and privacy. To set this work in context, we outline fundamental principles and models of data provenance and explore

how the existing studies achieve security principles. We further review the existing schemes for securing data provenance

collection and manipulation known as secure provenance and the role of data provenance for security and privacy, which we

refer to as threat provenance.
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1 INTRODUCTION

How has the environment changed since the intrusion alert was generated? Who had access to private user data
and when? Why does the inal version of a ile look like that? Who has made the most efort to maintain the
entire database?

In essence, answering these questions requires an understanding of the origins and the history of data in its life
cycle. Such information is known as data provenance. Broadly speaking, provenance (also called lineage) refers to
metadata describing the origins, history, or evolution throughout the life cycle of an end product. This includes
the whole spectrum of entities, data, processes, activities and users involved throughout the process.

Introduced in the database community [20], provenance has evolved to elicit signiicant interest in many ields:
tracking of products in supply chain [85, 86], validation and reproducibility of results in scientiic experiments [26,
30, 31], and debugging and reinement of data processing [62].

Driven by the explosion of digital data constantly created, copied, transferred and manipulated through online
platforms, provenance has played a signiicant role in security. Indeed, provenance provides assurance about
the correctness of data modiications, enables data forensics, and allows us to verify access through a historical
perspective.
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Due to the versatility of provenance use-cases, it has recently gained signiicant interest in the security
community. Data provenance has shown tremendous value in numerous security and privacy applications.
For example, for privacy-preserving network analysis to explore system behavior while providing guarantees
for organizations’ privacy preferences [148], for security protection of data by controlling users’ access using
provenance [100], or to protect system integrity [120].
Although historically, provenance has been primarily used with legitimate data, more recently, researchers

started leveraging provenance as a means for tracking anomalous events, including the detection of intrusions [17,
139] and malware [127]. With unprecedented changes in the threat landscape, the need for securing provenance
information has emerged. Given the rapid evolution of provenance applications, provenance data have become
a lucrative target. Indeed, compromising provenance data might not only leak sensitive information (e.g., the
components of a product), but also potentially undermine the trustworthiness of the system (e.g., bank records).
In this paper, we present a comprehensive survey on the role of data provenance in security and privacy.

Data provenance and provenance, in general, have been actively explored in the research literature [25]. Bose
et al. [25] provided a broad overview of provenance in various domains from the lineage retrieval perspective.
More recently, Herschel [62] ofered a more focused view of provenance studies across provenance types and
proposed a classiication of provenance research. Oliveira et al. [98] surveyed provenance analysis techniques.
Beyond these studies, over the past two decades, several surveys have explored the use of provenance in various
application domains: e-science [112], distributed systems [50], database systems [34, 122], the cloud [146], and
scientiic experiments [25, 98]. While extensive, these surveys predate a recent growth of provenance studies in
security and hence do not discuss security and privacy challenges of provenance research. Lee et al [76], Tan
et al. [123], and Zipperle et al. [149] are the only surveys that discussed the security and data accountability
implications of provenance solutions. Lee et al. [76] gave a brief overview of ten secure data provenance schemes.
Tan et al. [123] outlined the security requirements of distributed systems and briely explored how they can be
achieved through the capabilities of the existing provenance models. Zipperle et al. [149] narrowed its focus on
intrusion detection provenance systems.
We believe that a comprehensive, systematic and up-to-date survey of the existing research is essential for

researchers planning to initiate research in this direction.
Our contributions are as follows:

• We provide an overview of data provenance and its related concepts. We provide essential background
knowledge for data provenance security and privacy properties and highlight threats to data provenance
models and technologies.

• We provide a comprehensive, systematic and up-to-date overview of the existing data provenance research
in the security and privacy ield focusing on two aspects: threat provenance and secure provenance. We
discuss the existing threat provenance studies and the associated mechanisms for tracing threats outlining
their advantages and limits. We analyze the state-of-the-art secure provenance solutions that address
the existing security and privacy of the provenance data and the provenance users. To the best of our
knowledge, this is the irst attempt at this scale to systematize the existing studies in the area.

• We analyze research gaps in the area of secure provenance and threat provenance. Our analysis serves as a
guide through the existing research exposing underexplored areas.

The remainder of the paper is organized as follows: In Section 2, we introduce the basic concepts of the
provenance, its properties, and models. In Section 3, we introduce the theory of secure provenance and discuss
high level categories. Section 4 surveys the existing approaches for secure provenance, and Section 5 discusses
existing threat provenance solutions. Finally, Section 6 provides practical insights into gaps in the existing
mechanisms and Section 7 concludes the work.
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Fig. 1. Provenance representation example

Query Result

select e.cid 
from student s, enroll e, 
where s.sid = e.sid 
and e.semester="F2021"

cid

CS1103

CS2413

Fig. 2. A query for provenance representation example provided in Figure 1

2 PROVENANCE OVERVIEW

The deinition of provenance has evolved over the years, often changing based on the application context.
Historically, in database systems, provenance was known as lineage and referred to the source of data as a result
of query processing, i.e., data provenance. The concept of data lineage was irst formalized by Cui et al. [40], and
in the context of relational databases, it was used to identify each tuple t in the set of input tables that contributed
to the output of a query [35].
The data provenance or lineage was viewed from three angles [34]: why-provenance, i.e., the set of minimal

input tuples that contributed to the result; how-provenance, specifying how the output was generated from the
minimal input set; and where-provenance, a mapping between the speciic output ields and the input ields.

To illustrate these concepts, consider a set of tables given in Figure 1 and an example query in Figure 2, which
retrieves all courses in which students were enrolled during the F2021 semester. The output of this query includes
two tuples, and the lineage of the irst output tuple (CS1103) is {Student (t4,t5) and Enroll (t8,t9)}. Here, Student
(t4,t5) represents sub-instances of the source table Student with the tuples t4 and t5 (see Figure 1). Similarly,
Enroll (t8,t9) are the sub-instances of the corresponding source table. The tuples in each sub-instance can be said
to serve as the ‘witness’ for the output tuples, because they justify the existence of the output tuples.
The idea of a witness is the basis of why-provenance, which was formalized by Buneman et al. [28] in the

context of a semi-structured data model. With why-provenance diferent witnesses of output tuples are identiied.
For instance, the why-provenance of (CS1103) is {t4,t5,t8,t9}.

The why-provenance, however, does not clarify how an output tuple is derived from the input table based on
the execution of the query. To support this, the how-provenance was introduced, which is based on the formal
notion of provenance semirings [54]. The provenance of each output can be described by a polynomial. For the
considered query, the provenance of the output tuple (CS1103) is t4 × t8 + t5 × t9.

While data provenance in general was mostly concerned with content, in scientiic and collaborative environ-
ments provenance was emphasized as the low of execution. More speciically, worklow provenance was deined
as a set of steps that were executed to achieve the results along with information about the environment used
in execution, performed activities and coniguration parameters. This view of provenance is often referred to
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V2:D

R(CS1103)

Student(t4)

Enroll(t8)

V1:D

Student(t5)

Enroll(t9)

Fig. 3. Provenance graph representation of the how-provenance showing the partial results of the query given in Figure 2.

when issues of reproducibility, reusability and troubleshooting are raised, e.g., in distributed systems or scientiic
computations.
Along with data and worklow provenance, Herschel and Hlawatsch [63] deined information systems prove-

nance, and provenance metadata as more general types of provenance, while Anjum [12] took a step further and
outlined process provenance, that addresses tracking the data dependencies involved in the transformation process
that produce a data item. Any metadata about processes within any information system are considered under
the purview of process provenance. Therefore, worklow provenance and information systems provenance are
subsumed by process provenance.
Whereas process provenance is a coarser-grained form of provenance because of its generality and wider

applicability, data provenance can be considered a more ine-grained provenance, due to its focus on low-level
(e.g., tuple) transformations.

Over the past decade, a number of diferent provenance types and granularities have been considered [98].
Along these types, a notion of secure provenance has emerged, emphasizing the need for securing provenance
information. Indeed, with the unprecedented changes in the threat landscape, securing provenance information
became critical to facilitate its trustworthiness. In this work, we narrow our focus to the role of data provenance
in security and privacy.

2.1 Provenance representation

Similar to provenance deinition, eforts in conceptual modeling of provenance metadata can be traced back to
earlier work in the database community. Graphs have traditionally been considered as the most general way
to formally represent database provenance. As such, any graph used to model provenance is referred to as a
provenance graph.
In general, the speciic format of captured provenance data depends on the domain. A directed acyclic

graph (DAG) is a common provenance representation. In a DAG, each node represents an entity, and each
edge represents the relationship between two entities. An entity can be represented, for example, by a ile or a
process, while the relationship denotes information low from inputs to outputs [27]. DAG is a suitable way to
represent provenance, since it can capture the relationship and dependence structure that may be present among
the entities.
For example, how-provenance and why-provenance can be represented as DAGs to connect outputs to the

inputs [4]. An example of a DAG provenance graph is shown in Figure 3. It represents the provenance of the
output tuple (CS1103), where the tuple nodes (square) are connected by derivation nodes (oval). The derivation
node represents an algebraic expression based on provenance semirings. For instance, the two tuple nodes labeled
Student(t4) and Enroll(t8) contributed to the generation of the result tuple node R(CS1103). The label of each
derivation node contains a unique node id and a derivation expression. For the node labeled V1:D, V1 is its node
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Entity

Activity

used wasGeneratedBy

wasDerivedFrom

wasAttributedT o

wasAssociatedW ith

Agent

Fig. 4. The PROV model

Course

Enroll

used

wasGeneratedBy

wasAttributedT o

wasAssociatedW ith
Student Department Instructor

Teach

wasAssociatedW ith

wasAssociatedW ith

Fig. 5. An example based on the PROV model: objects

enclosed in doted line correspond to the example tables

in Figure 1 and query in Figure 2

id and D the derivation expression ( t4 Z t8 ∪ t5 Z t9 ). This provenance graph can also be formally represented
as a bipartite graph, G = (T, D, E), with vertices T ∪ D and edges E ⊆ (T × D) ∪ (D × T ). Here, vertices T are the
tuple nodes and D are the derivation nodes.
Beyond graphs, provenance systems have used other formats to represent provenance, e.g., XML format and

relational tables. However, most of them were domain speciic.
The development of a generic domain-agnostic model to represent provenance has been an ongoing efort in

the research community. Aiming at establishing the interoperability of systems, the Open Provenance Model

(OPM) was proposed to exchange provenance information between systems [91]. The OPM models provenance
as an annotated DAG. The OPM nodes can represent 1) an artifact, i.e., an immutable object, 2) a process, i.e.,
artifacts’ actions and causalities, or 3) an agent, the initiator of the process. The nodes are linked using causal
relationships, representing their dependencies (e.g., used, wasGeneratedBy, wasControledBy). Built on purely
syntactical inference rules, OPM was criticized for its lack of completeness [75].
The PROV model appeared as a successor of the OPM model aiming to promote interoperability among a

diverse variety of provenance types. The PROV model was standardized by the Provenance Working Group at the
World Wide Web Consortium (W3C) [89]. While entity-relationships components of PROV are quite similar to
those of the OPM, the PROV is capable of expressing a richer set of concepts. the PROV model elements include
entities, i.e., physical, digital, conceptual objects, activities, and agents linked through various relations. This is
shown in Figure 4. The PROV model was designed as a generic model applicable to a variety of data sources. To
support this interoperability, PROV was accompanied with a set of models, among them PROV-DM, a provenance
data model that captures provenance elements, and PROV-CONSTR, which describes constraints that provenance
statements must satisfy. A concrete example that utilizes the PROV model is shown in Figure 5. This represents a
student enrolment system within a university. There are three agents: Department, Student, and Instructor. A
Student is associated with the Course entity through the Enrolment activity. The Course entity is generated by
the Teach activity attributed to the Instructor.
The PROV model remains a widely adopted provenance model. At the same time, diferent models were

subsequently proposed to support PROV applications in diferent areas. For instance, ProvONE extended PROV to
support the DataOne scientiic community, which is a large, federated data network for open, persistent, robust,
and secure access to Earth observational data [33]. Prov-IoT [68] was geared speciically to Internet of things
(IoT) environments and incorporated security metadata along with provenance data. While the model ofered
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P1 P2 P3 Pj Pj+1Provenance chain ...

Userj Kpub (Userj) Mj Hash(D) Cj
Keys for

auditors, K
Provenance record

 Kpri (Userj)   Hash (Userj, Mj, Hash(D), K, [Kpub (Userj)])  Cj-1

Signed Checksum of the
previous provenance record Pj-1

Fig. 6. Provenance chain representation

little details on how and what security provisions could be included, it outlined the necessity to provide trust,
integrity and authenticity of provenance.

Recently, Gao et al. [51] introduced big data provenance model (BDPM), which extends the PROV-DM model,
in the context of tackling data transformation processes through various components in big data systems. BDPM
allows to incorporate constraints that help ensure the construction of valid provenance while retaining a core
PROV structure. While the model does not provide any security properties to secure provenance, it ofers data
security supervision strategies based on provenance graph analysis to help detect abnormal operations.

There are also numerous derivative models based on OPM and PROV such as OPM v1.01 [92], OPM v1.1 [90],
D-OPM [39], PROV-Wf [38] and Wf4Ever [21].

Noting the limitations of PROV and OPM standards, several studies attempted to develop more comprehensive
models applicable across various ields. A generic provenance model SimP [67] was designed to represent
provenance information at diferent levels of granularity as requested by users through the Granularity Policy
entity. Although the model was viewed as security-aware, it only allowed a controlled access to provenance
information through the deined access control policy.

Overall, these models enable the provenance system to organize the provenance data more reliably and in turn
implement more useful and convenient functionality (e.g., faster querying, authenticated data querying). Yet, the
vast majority of them lack security provisions.

A number of custom data provenance models were proposed and geared toward speciic contexts (e.g., docu-
ments [59, 61], IoT [99, 111]). Many of them were not mature, and consequently, did not receive wide acceptance.
An exception to this was a provenance chain introduced by Hasan et al. [59, 61] for securing provenance
information of documents has become a widely used model in secure provenance. The provenance chain organized
as a time-ordered chain represents a history of document modiications, where each user’s modiications were
encompassed in a provenance record. Figure 6 gives an example of a provenance chain. A provenance record � �
incorporates information about a user���� � that performed a (optionally encrypted) sequence of modiication
actions� � on a document � , hash of the document ���ℎ(�), key information � that auditors can use to decrypt
provenance record ields if encrypted,� � checksum signed by a���� � that stores previous provenance record � �−1,
and���� � public key if used���� (���� � ).� � checksum incorporates a hash of the record � � and the previous� �−1

checksum. Although later studies extended the initial idea of the provenance chain, its main core characteristics
remained pertinent.

Table 1 presents a summary of the major provenance models.
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Data provenance in security and privacy • 7

Secure Provenance

Cryptography-based Secure Provenance

Generic Provenance Systems

Domain-specific Provenance Systems

Blockchain-based Secure Provenance

Threat Provenance

Detection of Individual Attacks

Network-related Attacks

Attacks on ML Algorithms

Threat Detection

Malware Detection

Intrusion Detection

Detection/Analysis of Security Faults

Generic Provenance Tracing
Generic Provenance Systems

Domain-specific Provenance Systems

Fig. 7. Categorization of data provenance studies in security and privacy

3 PROVENANCE IN SECURITY

In this section, we present the concepts of secure provenance and introduce high level categories.

3.1 Provenance security properties

Historically, security properties of provenance were not emphasized. Collection and analysis of provenance was
viewed in the context of three broad applications: ensuring reproducibility, understandability and quality of
monitored data [62]. In other words, provenance was considered as a means for conveying the information about
data. For example, the provenance for reproducibility aimed to support replication of the process used to produce
the data. Provenance-based understandability emphasized on an explanation of how the results were obtained.
Finally, provenance focused on the quality of the obtained data and its process aimed at assessing various quality
dimensions, e.g., correctness, and performance.
With the development of security related provenance research, the inadequacy of these properties became

apparent. Indeed, practical applications of data provenance call for trustworthy data that can facilitate further
analysis. For example, Bertino et al. [22] noted that for privacy-aware analysis, it is not suicient to simply
ensure the conidentiality of data. Indeed, provenance conidentiality guards sensitive provenance information
(e.g., location data), yet, entities (e.g., devices collecting location information) and users involved in the chain
of data production are not protected from exposure. Thus, while conidentiality ensures protection of collected
provenance data, privacy provides additional guarantees that sources of this provenance are not revealed to
unauthorized entities.
In the context of security, data provenance properties have seen less agreement. Tan et al. [123] viewed

conidentiality, integrity, authenticity, and reliable collection as four security requirements essential for reliable
and trustworthy data provenance. Zafar et al. [142] broadened this list to include chronology, i.e., assurances of
preserved chronological order of events, unforgeability of existing provenance records and their non-repudiation.
Unforgeability as a means to attest to the ownership and history of data objects was emphasized by Lu et al. [82].
McDaniel et a. [88] posed tamper-proof and non-repudiation as the core principles of secure provenance. Among
related studies, availability of provenance has been rarely included in a list of core security properties. One
exception is a study by Hasan et al. [60] that viewed the eiciency of provenance mechanisms, the completeness
of records, their integrity, availability, and conidentiality as properties of secure data provenance. Availability
generally implies accessibility of data and is commonly assured through fault-tolerance mechanisms, e.g., data
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replication across multiple sites. For example, solutions that leverage decentralized ledger technologies such as
blockchain, implicitly ensure availability. In the context of provenance, however, availability has been sometimes
interpreted as a part of integrity, and therefore required integrity veriication that for example, provenance data
was not modiied [60, 105] or selectively deleted [69, 135]. In this survey, we maintain a traditional deinition of
availability of provenance data.
Ultimately, provenance security properties should be examined through the lens of provenance application.

For example, conidentiality of provenance may not be required for public code repositories, but can be crucial
for scientiic worklows. Similarly, availability is vital to provenance captured on mobile systems when it is used
for location-based services.
Hence, despite diferent application domains, secure provenance hinges on the integrity of provenance data,

including the authenticity and non-repudiation of the provenance data source pillars. In the computer security
domain, integrity is commonly understood as an umbrella property for guarding against improper/unauthorized
data and system modiications. In the case of provenance, integrity is generally narrowed down to data integrity,
as the integrity of the system is challenging to ensure. Integrity of provenance data is based on the assumption
that collected provenance has not been modiied. This refers to individual records as well as the structure of
their group. For example, integrity of provenance chain assumes that individual provenance records have not
been tampered with, their order within the chain has not been modiied, and the provenance chain has not been
replaced.

There are several existing mechanisms to ensure these security properties. Cryptographic hashing is one of the
most common approaches to ensure the integrity of data. This is the mechanism implemented in the provenance
chain. While hashing provides guarantees against data tampering, it gives no assurances on the source of the
data. Hence, a speciic focus on authenticity and non-repudiation emphasizes the need for stronger guarantees.
In this context, authenticity requires a veriication of provenance data sources (e.g., system components,

IoT devices), which is commonly achieved through mechanisms such as digital signatures. Provenance non-
repudiation takes a step further providing evidence so that the source cannot deny generating provenance
data.
For example, provenance records in a provenance chain are hashed providing integrity guarantees, and

signed with a user’s private key ensuring authenticity of provenance. While non-repudiation is not a part of
initial provenance chain design, it was often considered in the improved versions of a provenance chain. Note,
conidentiality in the provenance chain is also treated as an optional property.

Table 2 lists examples of how the existing studies ensure the provenance security properties and the mechanisms
they employ.

3.2 Categories

Modern provenance solutions in the area of security and privacy tend to focus on two broad objectives: (1) ensuring
secure and/or privacy-preserving management of provenance data, which we refer to as secure provenance, and
(2) leveraging provenance for security, i.e., threat and secure fault analysis, which we denote as threat provenance.

Secure provenance solutions address the existing security and privacy challenges of provenance users and
provenance data collection and manipulation [36, 64, 79, 81, 104]. There is no uniform agreement on what
secure provenance entails, e.g., not all provenance studies support conidentiality or availability as the essential
requirements of provenance data, yet, all studies see integrity as a core characteristic. Hence, based on how the
integrity of provenance data is ensured, the existing secure provenance studies can be broadly divided into two
categories:

• Cryptography-based secure provenance: The early studies in the area primarily leveraged cryptographic
concepts to provide guarantees for provenance data integrity and, in many cases, conidentiality.
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• Blockchain-based secure provenance: With the rise of distributed ledger technologies such as blockchain,
various blockchain platforms have become the main vehicle for ensuring security and privacy of provenance
data. Once deployed on the chain, the blockchain records are immutable, i.e., cannot be modiied or deleted
from the chain, which in essence provides records’ integrity veriication in a trustless environment. Hence,
the provenance core security requirement for integrity is naturally supported with the immutability of
blockchain records. While blockhain solutions at their core leverage cryptography and thus are a subset of
cryptography-based secure provenance, we feel that with the popularity of blockchain-based provenance,
these studies merit a separate category.

Threat provenance systems, in some sense, are secure provenance systems aimed to prevent the mishandling
of data in untrusted environments. When these security measures are not in place or fail, provenance has shown
a signiicant value in the identiication and analysis of malicious activities and threats [56, 133, 138, 139]. The
existing threat provenance studies can be broadly divided into the following categories:

• Detection of individual attacks: The detection of malicious activity can be realized through the analysis of
provenance data. However, not all attacks are visible in the available provenance data. Hence, a signiicant
number of studies have been proposed to collect and analyze provenance necessary for the detection of
particular types of attacks.

• Threat detection: The use of provenance data for threat detection is becoming increasingly common.
Provenance provides a unique and rich source of information that enables accurate detection and tracing
of a variety of threats, e.g., from intrusive activity to violations of privacy policies.

3.3 Atacks on provenance

Over the years, a number of attacks on provenance have been explored. These attacks may aim to disrupt the
normal provenance tracking and collection mechanisms or compromise provenance records after they have
been collected. Regardless of the time of their occurrence, the following types of attacks were discussed in the
reviewed literature:

• Forging records, a malicious user or multiple colluding users may forge provenance records. Forged data may
then be added between legitimate provenance records or appended at the end of the existing provenance
records, e.g., the end of the provenance chain. The latter attacks are commonly referred to as append
attacks. Forging and adding records might be signiicantly simpliied in the presence of multiple consecutive
adversaries that may simply introduce forged provenance between them.

• Modifying records, an external adversary or a dishonest user may change or corrupt a provenance record
before its veriication and storage.

• Record shuling, many systems rely on the chronological order of events; hence, provenance order informa-
tion might be critical for some applications, such as forensic analysis and auditing. The record shuling
attacks manipulate provenance information to rearrange the order in which provenance is recorded.

• Dropping records/entire provenance chain, a malicious user or multiple colluding users may selectively drop
provenance records or an entire provenance information captured on a system.

• Bribe attack introduced by Tosh et al. [125] assumes adversaries can bribe users to invalidate some message
records. For example, in a blockchain-based provenance, users might be incentivized to append their blocks
to the attacker’s chain, resulting in the main chain being abandoned.

• Ownership attack aims to repudiate provenance ownership. Ownership can be modiied during the prove-
nance generation process, or after the provenance data are collected and stored. A variation of this attack
is denial of the ownership of the produced data.

• Inference attack compromises provenance data privacy allowing an adversary to infer sensitive information
about sources and process of provenance collection.
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In addition to these provenance attacks, provenance can be compromised through physical attacks on devices
that participate in provenance collection, storage or analysis, for instance, adversarial sensors, in the case of
provenance collection in IoT environments. Physical attacks, however are rarely considered, and the majority of
the existing provenance methods assume the trustworthiness of physical devices and platforms.

ACM Comput. Surv.
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Table 1. The major provenance representations

Name Domain Security Protec-

tion

Description

OPM [91] Generic - A universal provenance model where arti-
facts, processes, and agents are linked using
causal relationships, representing their depen-
dency.

OPM
v1.01 [92]

Generic - Improved version for original OPM.

OPM v1.1 [90] Generic - Improved version for OPM v1.01.

D-OPM [39] Scientiic work-
low

- D-OPM enables both prospective and retro-
spective provenance information access and
exchange for scientiic worklows.

PROV [89] Generic - Application-agnostic model that is similarly
to OPM links entities, activities, and agents
through their relations.

PROV-Wf [38] Scientiic work-
low

- Runtime provenance can be provided and
queried during the execution by PROV-Wf.

Wf4Ever [21] Scientiic work-
low

- A novel approach to the preservation of sci-
entiic worklows through the application of
research objectsÐaggregations of data and
metadata that enrich the worklow speciica-
tions.

ProvONE [33] DataOne scien-
tiic community

- DataOne scientiic community, which is a
large, federated data network for open, per-
sistent, robust, and secure access to Earth ob-
servational data is supported.

Prov-IoT [68] IoT Security metadata
to give evidence
of necessary secu-
rity controls

Uniied model for IoT provenance data.

BDPM [51] Big Data Data security
supervision
strategies

Generic provenance representation suitable
for data with multiple organization layers.

Provenance
Chain [59, 61]

Generic Integrity, authen-
ticity

The provenance chain organized as a time-
ordered chain of document modiications,
where each user’s modiications are encom-
passed in a provenance record.

SimP [67] Generic Access control
policies regulate
access to sensitive
provenance data

A multi-granular provenance model that sup-
ports graph and relational database represen-
tations.

’-’ indicates that the feature is not supported
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4 SECURE PROVENANCE SOLUTIONS

Over the past decade, there has been a signiicant amount of research on the management aspects of provenance,
for instance, eicient querying [106], provenance-aware storage systems (PASS [95] and PASSv2 [94]), provenance
management system for scientiic worklows [87], cross-platform distributed data provenance SPADE [53], and
cloud management [78]. However, until recently, there have been only limited eforts to ensure the security and
privacy of provenance information. Table 3 summarizes the reviewed secure provenance studies.

4.1 Cryptography-based secure provenance solutions

The protections laid out by secure provenance systems are often dictated by the security objectives within a
speciic application domain. Hence, we broadly categorize the existing systems into generic and domain-speciic

systems.

4.1.1 Generic provenance systems. The vast majority of cryptography-based systems target the conidentiality
and integrity of provenance data. Many of these schemes rely on digital signatures as assurance of users’ identity.
If each user that contributes (modiies or creates) to provenance records is associated with a cryptographic
key, the key can be used to sign the corresponding records, efectively providing non-repudiation guarantees.
However, these assurances are not suicient to guarantee the integrity of the provenance record structure. Indeed,
the provenance is not a set of isolated records. Depending on provenance organization, the relationships between
records also require integrity support.

In an early study, Hasan et al. introduced the idea of the provenance chain for securing provenance information
for documents [59, 61]. The history of a document modiication is organized as a time-ordered chain, where each
modiication of a document is represented in a provenance record. Sensitive ields of provenance records were
secured with a cryptographic hash and sealed with signature-based checksums to verify the records’ integrity. As
an alternative to the all-or-nothing approach that would generally require encrypting all provenance records,
the provenance chains embedded lexible broadcast and threshold encryption to avoid situations when a single
session key to encrypt all sensitive ields is needed. This approach did not require an access control model to
manage auditors and users who may later need access to the records.

This scheme resembled an onion-like structure where each provenance record’s signature enclosed the signature
of the previous record and therefore information of the complete preceding chain and hence was later referred to
the Onion scheme. The proposed Onion scheme was extended in a more holistic cross-platform secure provenance
system, SPROV [60]. Despite its ability to protect internal records in the chain, the Onion scheme sufered from
several limitations, including the inability to detect owner history forgery or selective provenance record dropping,
i.e., the lack of reference to the next record allows adversary to drop selective number records at the end of the
chain, and re-sign with his own signature.
Regardless, the idea of the provenance chain and the Onion scheme has been further leveraged in numerous

studies [6, 64, 105, 116, 117, 119, 135, 143, 145]. For example, Zhang et al. applied it in the context of databases [145].
Noting the complex structure of data objects commonly stored in databases and the non-linear nature of
provenance records resulting from various operations on these compound objects, the researchers developed
an advanced scheme for provenance integrity veriication of compound objects (as opposed to atomic objects
considered by [61]).

Syalim et al. [119] extended the proposed Onion scheme to a DAG representation of the provenance model. By
signing the nodes and the relationships between nodes in the provenance graph, the integrity of the provenance
was easily veriied by checking the signatures. As opposed to the Onion scheme, Syalim et al. leveraged a
multi-level access control model to create a separation between compartments, i.e., nodes that belong to diferent
security levels.
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Wang et al. [135] proposed a public-key linked chain (PKLC), which solved the Onion scheme deiciencies by
linking public keys of the users of the provenance records. The PKLC structure provided better protection against
selective provenance dropping but required the knowledge of the next record in the chain. This requirement
was later removed through the use of aggregated signatures, i.e., a single signature that aggregates signatures
verifying individual provenance records, in the follow-up study by Ahmed et al. [7].

Rangwala et al. proposed a signature-based mutual agreement scheme that incorporated three signatures into
a single provenance record [105]. Similar to the Onion approach, the mutual agreement scheme maintained
the signature of the previous record. Like the PKLC, it included a signature of the next record, hence allowing
veriication between any pair of provenance records, yet at the expense of higher performance overhead than
both the PKLC and Onion schemes. The memory overhead, however, is a common side efect of provenance
systems as the amount of collected provenance with metadata can be signiicant, which consequently creates
challenges for practical data analysis (see, e.g., [19]).
These early studies eventually led to more comprehensive solutions to data provenance, often referred to

as whole system provenance. A vision of distributed trustworthy provenance architecture was outlined in the
End-to-End Provenance System (EEPS) [88]. Based on the notion of host-level provenance, EEPS relied on trusted
monitors to instrument provenance collection and validation. The validation process provided a provenance
record that identiies not only the inputs, involved systems and applications leading to a data item, but also
evidence of the identity and validity of the recording instruments.
A more mature whole-system provenance solution, Hi-Fi, was developed by Pohly et al. [102] in 2012. This

was the irst attempt to introduce a practical provenance collection framework across applications for security
purposes. Built on Linux Security Modules, Hi-Fi collected provenance information through mediated access to
kernel-level objects, which efectively gave a trusted view of the whole system including communication with
other potentially proven systems. The integrity of the collected provenance data was protected by a write-once
read-many (WORM) like storage systems [113]. In fact, this approach is one of the few that explicitly assumes
that provenance collection mechanisms at lower levels of a system are not trustworthy.

Bates et al. addressed this assumption in a framework called Linux provenance modules (LPM) [19]. LPM is a
modular system that facilitates secure provenance collection at the kernel level. To provide strong provenance
integrity guarantees, LPM leveraged a Trusted Platform Module (TPM) and the Linux Integrity Measurements
Architecture (IMA) [107]. LPM created a trusted execution environment by monitoring and verifying operations
on controlled objects (e.g., iles, shared memory, sockets).

The architectural ideas that were implemented in LPM have also been seen in other whole-system provenance
models (e.g., [95, 101, 120]). For instance, the CamFlow [101] provenance collection system, although it did
not pursue security objectives, was leveraged by provenance applications to ensure the trusted collection of
provenance data.

The other weakness that these earlier provenance systems exhibited is assuring security under relaxed threat
models, often implicitly assuming honesty of users [18, 82]. This assumption signiicantly limits the practical
application of these models. Indeed, malicious corruption of provenance records is challenging to avoid; hence, it
has been taken more into consideration in follow-up studies.

4.1.2 Domain-specific provenance systems. SECAP [143], a secure application provenance scheme, was introduced
for cloud environments. It speciically addresses the presence of malicious users and assumes that a dishonest
cloud provider can access and tamper with the provenance data. SECAP constructs provenance chains similar to
the Onion scheme initially introduced by Hasan et al. [61]. The provenance chain and the corresponding proofs
of provenance (i.e., that includes a signature of a cloud provider) are preserved in a Bloom ilter structure, a
space-eicient data structure based on hashing that allows to quickly check whether an item is present in the
data structure or not. This approach essentially prevents an adversary from retrieving the original information.
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Fig. 8. An example of sensor or IoT network and the corresponding aggregated provenance graphs

SECAP is a tamper evident scheme that is realized through the use of cryptographic proofs calculated locally and
published publicly (e.g., on an RSS feed) to prevent changes to the provenance after its calculation.
The issue of colluding malicious users was addressed in a series of studies by Ahmed et al. [5, 6, 69]. The

majority of the solutions that are based on the idea of the provenance chain implicitly assume transitive trust
and therefore are not able to handle multiple malicious users that may e.g., shule provenance records without
being detected. To resolve this, Ahmed et al. [5, 6] extended the aggregated signatures introduced in their initial
study [7] to prevent tampering with provenance records by multiple consecutive and non-consecutive users.
Jamil et al. [69] proposed maintaining an authenticated Merkle tree in addition to a provenance chain to verify
the integrity of provenance records. Although the scheme does not prevent tampering with records, it allows
for the discovery of such activities. Similar to some of the previous works, these studies focused speciically on
securing provenance collected within a single application (e.g., documents).

A few other secure provenance methods were proposed for speciic purposes. Many of them focused on wireless
sensor (WSN) and IoT networks. Collecting and transmitting provenance in these networks is typically associated
with two challenges. Hostility of the deployment environment requires protection of information transmitted
by the sensors. While a resource-constraint nature of sensor devices makes traditional encryption approaches
not suitable for WSN and IoT networks. As a result, provenance schemes focused on compression and secure
encoding strategies for provenance information. Most of the proposed schemes for wireless and IoT networks
model provenance as a directed acyclic graph (DAG), where vertices correspond to sensor devices and edges
represent a traversal path between them. The provenance is then collected at each node on the data low path.
To compress the amount of provenance data passed through network, nodes implement aggregated provenance,
i.e., combine their own provenance with the provenance records received from previous nodes on the path. The
provenance records are typically compressed and secured forming representation that in essence, resembles the
provenance chain mechanism.
For example, Figure 8 shows a network topology and an example of aggregated provenance graph. Network

data (e.g., packets) generated by the sensors �0 and �1 are aggregated with data from node �2 and forwarded
along the path to the base station (server node).

As opposed to the whole provenance solutions, the schemes for sensor networks limit the collected provenance
to information describing a forwarding path of data since its generation, which commonly includes node identiiers.
In the context of network hostility, this information is often suicient to detect a presence of malicious nodes.
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For example, presence of unexpected node provenance is visible at the base station when compared to the
expected path (Figure 8c). However, more advanced detection requires additional information (see the overview
in Section 5.1).
For example, to reduce the inevitably growing size of provenance information as packets travel through the

network, Hussain et al. [64] used arithmetic encoding, a lossless data compression technique, to compress the
collected provenance information. Since arithmetic encoding is dependant on the knowledge of nodes’ occurrence
probabilities, the approach requires a training phase to estimate occurrence probabilities of sensor nodes in a
network. To prevent selective dropping of packets generated by benign nodes and to further bind nodes’ identities
to the generated provenance record, the scheme employed a distributed message digest based on the AM-FM
sketch mechanism, a distributed aggregate computation to verify that the none of the captured results have been
modiied by adversarial aggregators [52].

DBNP [128] and CBP [141] schemes were similarly built on the idea of arithmetic encoding. DBNP leveraged
Bayesian network to express the occurrence probabilities of edges in the packet path. This allowed to suppress
redundant nodes, and reduce the size of the encoded provenance. CBP used layered clustering approach for
incremental provenance encoding and consequently decoding. The primary beneit of such layered decoding
is the rapid provenance trust evaluation, i.e., if a layer is not decoded correctly due to compromise, no further
decoding is performed.
As opposed to Hussain et al. [64], DBNP and CBP focused strictly on provenance compression rate. Com-

pression alone does not provide suicient security guarantees. While provenance encoding to some extent
masks transferred provenance information, an eavesdropping adversary similarly to the base station can obtain
occurrence probabilities of nodes, hence compromising provenance. Similarly, the Probabilistic Provenance
Flow (PPF) approach proposed by Alam et al. [65] ofers eiciency rather than security. To constrain the size of
transferred provenance data, PPF applies provenance probabilistically, i.e., each node embeds its identiier into
the packet with a given probability, then, at the base station, the complete provenance path can be constructed
using multiple partial paths analyzed in the past.
A few schemes ofered some security guarantees alongside eiciency. Sultana et al. [117] and Shebaro [108]

used in-packet Bloom ilters (iBF) to encode provenance information. Each node in a data forwarding path
encodes its id using an encryption key known to the base station and inserts the encrypted id in the iBF, which is
then transmitted on the path to the base station. Since a Bloom ilter has a ixed size, the structure size does not
increase as a packet traverses the network collecting provenance.
Data provenance encoding scheme proposed by Wang et al. [129] encodes provenance using the node-based

packet path dictionary (PPD). Each node maintains records of path-related provenance information for all packets
that passed through it in the PPD, reducing encoding and decoding process to lookup operations. This scheme
further ensures integrity of provenance records by using distributed message digest mechanism to bind a packet
and its provenance, the same mechanism used by Hussein et al. [64].
Similar to PPD, an index-based provenance compression algorithm (IBP) proposed by Liu et al. [81] encodes

provenance record based on the path index maintained in a database at each node. Once encoded, only the
compressed path index is transmitted between nodes on the path.

An alternative approach based on regulating access to provenance was proposed by Porkodi et al. [103] in the
framework for IoT devices based on hybrid attribute based encryption (HABE). All users, devices and sensors in
the IoT network are registered and authenticated, consequently allowing access control polices to be integrated
within the framework to ensure restricted control to encrypted provenance data. With a focus on veriication,
the work leaves out details of provenance representation. Similar to [5, 6], the proposed scheme is also resistant
to collusion attacks. A similar approach, although with more focus on the distributed nature of the IoT network,
was considered by Siddiqui et al. [109].
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Hasan et al. proposed a tamper-evident framework for ensuring the integrity and privacy of the location
provenance records through endorsements of witnesses co-located within a mobile device’s vicinity (e.g., wireless
access points) [57, 58]. Although this prevents malicious users from forging their location records, the presence
of necessary witnesses might not be feasible or appropriate in all scenarios. Hence, Wang et al. [136] relaxed this
requirement and proposed a distributed spatial-temporal provenance proof architecture, STAMP.
Several studies have focused on securing provenance information of users’ locations on mobile devices. The

need for these solutions stems from numerous services that rely on users’ location history. The digital proof of
the user’s presence in a given location is referred to as the location proof. Given the privacy-sensitive nature
of location information, the ability to provide location proof to third parties while maintaining user privacy is
critical.
An approach to secure provenance based on hardware technologies was initially conceptualized by Lyle

et al. [83]. The proposed high-level design of the attestation-based provenance architecture leveraged TPM-
supported attestation of executed code. Veriication of provenance integrity based on TPM was also considered
by Abbadi [2]. However, both frameworks remained theoretical, i.e., were not implemented and did not provide a
formal security analysis.

Privacy-preserving provenance. While the vast majority of studies focus on security aspects of provenance, there
are a few studies that ofer privacy-preserving provenance solutions. The irst attempt to explicitly address both
security and privacy challenges of provenance management was ofered by Bertino et al. [22]. The authors gave
a high-level overview of challenges related to designing a secure privacy-preserving provenance management
system.
As opposed to traditional systems that focus solely on the need to maintain privacy of individual data items,

privacy-preserving provenance schemes require protection of their relationship and associated provenance. In
this context, necessity to preserve privacy of collected provenance applies to the identity of processes and users
involved in collection of such provenance. For example, a platform collecting online inquiries of inancial loans
should incorporate mechanisms to protect privacy of individual users sending the inquiries.
Protection of provenance privacy has been approached mostly from two perspectives: using cryptographic

techniques (e.g., encryption) and access control mechanisms.
Cryptographic techniques: Lu et al. [82] was one of the few studies that explicitly stated the need for privacy

preservation in any secure provenance scheme. Their proposed provenance approach incorporated a conditional
privacy that required the real identity of users generating provenance to be disclosed only to a trusted authority.
This conditional privacywas ensured through pairing-based cryptography. However, the approach did not consider
provenance integrity protection. The latter was later addressed in the privacy-preserving data provenance scheme
(PDP) proposed by Alharbi et al.[9]. PDP leveraged trusted servers to authenticate users and generate provenance
data. All user requests were veriied by the trusted servers, and the corresponding provenance information was
signed and appended to the provenance chain (as in the Onion scheme [61]).
Sanchez et al. [32] investigated the privacy-preserving provenance for the IoT. The information that IoT

sensors generate, the corresponding derivation history of data, and the owner of the data were protected with
cryptographic pseudonyms that masked user credentials. The provenance data were signed using a non-interactive
zero-knowledge proof (NI-ZKP) and allowed interactive de-anonymization.
Access control mechanisms: Access control is one of the main mechanisms for controlling access to sensitive

provenance information. Several early studies envisioned access control as the vehicle for providing security
and privacy in provenance systems [27, 96]. In their secure privacy-preserving provenance management system,
Bertino et al. [22] also viewed access control as a main pillar for protecting provenance privacy. Noting the
deiciencies of existing access control approaches, Bertino et al. posed the lack of provenance access control
models, languages, and enforcement mechanisms for securing provenance as the main challenges in designing
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privacy-preserving provenance system. Some these challenges were later addressed in the follow-up studies
that introduced access control-based provenance model, SimP [67], and the ProFact framework for evaluation of
access control policy quality [3, 23].

Another approach to limiting access to sensitive information is data sanitization [24]. Sanitization approaches
mask sensitive provenance information, thus preventing inference attacks. For example, when requested, sensitive
provenance can be redacted, replaced or generalized concealing private information from those who do not have
access to it.
The challenge in data sanitization is deining practical mechanisms for identifying and masking provenance

information requiring sanitization. Several provenance sanitization mechanisms were considered [41ś44, 137].
For example, ProPub [44] leveraged logic rules to derive a sanitized version of provenance graph based on user
requests and the deined provenance policies. Since user requests can invalidate provenance policies, ProPub
follows a set of logic rules to honour user requests that conforms to the provenance policies.

Many of the proposed methods focused on the privacy-preserving provenance of worklows often blurring the
boundaries between data and worklow provenance [41ś43]. For example, pointing to the limitations of the data
privacy concept for worklow provenance, Davidson et al. [43] introduced module privacy and structural privacy,
which refer to the privacy of internal modules that generate provenance and dependencies between them, which
can be viewed in the data provenance realm, as how and where provenance. The authors [42] further explored
provenance protection for module privacy posing what they called the SecureView problem, i.e., "What is the
minimum cost of intermediate data that can be hidden while guaranteeing that individual modules are �-private
for some value of �". The proposed solution developed a framework to provide a partial view of the module(s)
given the user permissions allowed by an access control model. While these privacy-aware models do not ofer a
detailed design of the system, the provenance conidentiality is assumed to be protected. As an extension of this
work, Wu et al. proposed GPPub, a privacy-preserving provenance method [137] generalizing the constraints of
Davidson et al.’s [42, 43] model.

4.2 Blockchain-based secure provenance solutions

Cryptography-based solutions have evolved from a centralized architecture with a trusted authority to a dis-
tributed design. The latter was challenged by the presence of adversaries. Hence, the appearance of blockchain
technologies ofered methods that were logical and resilient to tampering platforms to support the integrity
requirements of secure provenance schemes.

4.2.1 Generic provenance systems. ProvChain, a blockchain-based data provenance system was proposed by
Liang et al. [79]. ProvChain maintains provenance records in a Merkle tree structure [1]. A Merkle tree is a tree of
hashes that is used to authenticate a list of items. In ProvChain, provenance data are hashed and represented as a
leaf of the Merkle tree. A non-leaf node’s hash is calculated from the hashes of its children. The root of the Merkle
tree then represents all hashes within the tree and can be used to verify provenance data items. A set of blockchain
transactions form a block and after external veriication (e.g., by an auditor) can be included in a chain. Hence,
data provenance records are published globally on a blockchain, and any adversarial modiication of a provenance
data record after its veriication requires an adversary to modify the transaction and the corresponding block on
the chain. User privacy is preserved by hashing a user ID associated with a data provenance record.
Similar to ProvChain’s approach, the LineageChain provenance system [106] stores provenance in a Merkle

tree data structure. LineageChain is one of the few systems that ofers lexible provenance capture and access
mechanisms through smart contracts. A smart contract can deine the exact provenance information to retain;
upon execution, the message is automatically preserved on the blockchain. Similarly, smart contracts provide a
way to access provenance information at runtime. However, access to historical information through contracts is
limited and has to be explicitly tracked, which is a common limitation across the existing provenance schemes.
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The SmartProvenance system proposed by Ramachandran et al. [104] addressed ProvChain limitations. As
opposed to ProvChain, it implemented automated veriication to prevent potential collusion between the external
party and the users. Provenance records were represented using the OPM, i.e., the state of data before and
after the change was recorded with the corresponding user information. SmartProvenance was implemented
as a two-part system with an on-chain module and an of-chain module. The on-chain module represented an
Ethereum blockchain that included smart contracts regulating users access control and provenance trails. The
Ethereum blockchain platform is built on a variation of the Merkle tree structure called the Merkle Patricia
tree[29]. The of-chain module was mainly used for the automated veriication. The users’ privacy was protected
by design, i.e., SmartProvenance leveraged the Ethereum blockchain platform, which hides user’s identity through
the use of a public key. SmartProvenance was one of the few that explicitly provided availability of provenance
data through the use of node replication.
Zhang et al. [147] combined the beneits of ProvChain and SmartProvenance in a secure data provenance

scheme for cloud systems called ESP. Similar to SmartProvenance, ESP leveraged the Ethereum blockchain to
integrate each provenance record into a transaction on the blockchain. ESP, however, outsourced provenance
veriication to an external trusted party, i.e., an authenticated server, that was responsible for automated user
authorization, in the same fashion as ProvChain. The use of authenticated servers also allowed hidding user
identities through digital pseudonyms, which guarantees the user’s conditional privacy.

4.2.2 Domain-specific provenance systems. The development of later systems has mostly leveraged features
of SmartProvenance and ProvChain and primarily focused on various domains. For example, Zeng et al. [144]
proposed a blockchain-based compression free data provenance scheme (BCP) for wireless sensor networks
(WSNs). Distributed and usually unattended deployment of wireless network sensors often requires collection
and transmission of data to remote locations for analysis. Hence, tracking the provenance of the data origin and
its traversal path is critical for establishing the trustworthiness of the data. Therefore, the provenance information
is distributively stored on the nodes along the packet path. As opposed to the previous approaches, which mostly
use a provenance chain, BCP stores the provenance records in the provenance tables. These tables are encoded
and stored permanently on the Ethereum blockchain. Similar to earlier schemes, BCP implicitly assumes that
sensor nodes are trusted, and even though the provenance data are stored on the blockchain in encrypted form,
there is no veriication of whether these data have been tampered with.

ProvNet blockchain [36] similarly focuses on tracking the provenance of distributed data. Designed for tracking
access and sharing of data, ProvNet stores provenance records in a networked blockchain, a variant of the
permissioned blockchain, which allows authentication of all participating users and hence assumes the presence
of dishonest users. However, the veriiers that validate and grant user requests for data sharing and consequently
store provenance on the blockchain are assumed to be trusted entities.

Recently, Mothukuri et al. proposed BlockHDFS, a blockchain-based secure provenance system for the Hadoop
distributed ile system (HDFS) [93]. HDFS, one of the most widely used ile systems that deal with big data
applications, is mainly used for batch processing of data. It is known for its high throughput data accessibility
with low latency, and thus it is very popular. Since HDFS is designed for large volumes of data, robust security to
facilitate ile sharing in Hadoop is necessary. BlockHDFS stores provenance information for iles in the blockchain,
hence creating an immutable, tamper-proof set of logs for HDFS. Thus, even when HDFS storage is compromised,
the corresponding provenance is preserved intact.
Several approaches were developed speciically for secure data provenance in the IoT domain [70, 110]. For

example, Porkodi et al. introduced an approach based on HABE for IoT devices [103]. All users, devices and
sensors in the IoT network are registered and authenticated, consequently allowing access control policies to be
integrated within the framework to ensure restricted control to encrypted provenance data that are kept on a
blockchain. Similar to [5, 6], the proposed scheme is also resistant to collusion attacks.
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Griggs et al. [55] introduced a secure blockchain-based patient monitoring system. Tosh et al. [125] proposed
BlockCloud, a secure data provenance in the cloud. To the best of our knowledge, the system was not implemented
and remained an abstract model.

The AMP (authentication of media via provenance) system was introduced to preserve provenance information
of authentic media [46]. AMP stores digitally signed media data with the corresponding provenance, including a
full history of media publishing operations in a blockchain called the media provenance ledger. This ensures the
authenticity of media items, their integrity, and auditability.
Only a few systems focused on privacy-aware blockchain-based provenance. Among them is Trac2Chain, a

provenance graph storage platform [124]. Provenance data naturally form a graph; however, the vast majority of
systems record the provenance as a chain and store it linearly on the blockchain. Once stored on the blockchain,
the data become public, threatening the privacy of users participating in provenance generation. Trac2Chain
addresses both concerns by protecting the data low and dependencies, i.e., linkages between provenance graph
nodes, against unauthorized users. The reconstruction of the provenance graph from blockchain transactions is
based on an access control mechanism that restricts the capabilities of non-provenance participants, i.e., anyone
outside the provenance system (including the blockchain peers).
The overview of blockchain-based data provenance systems clearly shows that blockchain undoubtedly

provides signiicant beneits for ensuring data provenance integrity and conidentiality. However, the existing
systems tend to ofer niche advantages, often trading eiciency and various security and privacy guarantees (e.g.,
the presence of malicious users, dishonest blockchain peers and cloud owners).
Another major challenge is limited access to historical data across chains. Typically, historical context is

available only to blockchain nodes that actively manage their history and cannot be used in a consensus protocol
that requires all participating nodes to share the same data. Another challenge in this context is the lack of
tampered evidence support for historical data. While the blockchain’s tamper-resistant nature guarantees that the
ledger is immutable, this cannot be ascertained for any data that is downloaded from a blockchain and maintained
oline. For instance, a full blockchain archive node typically records all historical transactions data of-line in an
unauthenticated data structure. This presents signiicant challenges for applications that are under regulatory
pressure to ensure veriiable historical context.

5 THREAT PROVENANCE

Secure provenance schemes implement security measures to ensure secure and privacy-preserving collection and
handling of provenance data. Threat provenance studies leverage provenance information to enhance system
security. A few of the reviewed studies, however, combine the beneits of both approaches. The summary of the
reviewed studies is given in Table 4.

5.1 Detection of individual atacks

5.1.1 Network-related atacks. Provenance technology has been widely used in database systems, distributed
systems, and cloud networks. With the rapid adoption of IoT networks, several provenance studies have focused
on the security and reliability of data transferred by IoT sensors. IoT networks and sensor networks in general
are often deployed in untrusted environments where devices and the transmission of data are susceptible to
attacks. The solutions typically involve path provenance information on the packets traversing networks; hence,
this type of provenance is often referred to as network data provenance, and therefore, network-related attacks
include packet dropping, data tampering and packet replay attacks.
One of the earlier studies by Sultana et al. [116] looked at a provenance-based mechanism for identiication

of malicious packet dropping by adversaries. This attack, also known as selective forwarding attack, involves a
malicious node dropping some packets and selectively forwarding the remaining traic to remain undetected.
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The challenge in this context is the transient nature of sensor networks that can cause packets to be dropped due
to various benign reasons, e.g., unavailability of nodes, communication failure, physical damage, etc. Analysis of
packet delays can be indicative of the potential presence of an adversary. This, however, is not suicient, as some
nodes may aggregate sensor information. The detection scheme proposed by Sultana et al. [116] utilizes the data
packets and inter-packet delays to encode provenance information. Manipulating inter-packet delays allows to
embed provenance data in a manner resembling watermarking. As a result, manipulated inter-packet delays form
a distinct distribution diferent from non-manipulated delays. Hence, an analysis of an estimated distribution
allows to detect the malicious packet loss. Localization of adversarial nodes requires decoding of provenance
information sent to the base station, which can then reconstruct and verify the provenance information. Similar
to many other studies, provenance representation in this scheme resembles provenance chain, i.e., each node
includes information of the last packet it received through this path.
The follow-up work by the same authors extended the secure provenance encoding scheme to relax some

assumptions and ofer an eicient handling of provenance [118]. However, both studies were evaluated in a
simulated setting; hence, no analysis of the schemes’ behavior in a real deployment environment was performed.
Alternatively, schemes proposed by Wang et al. [134], Lim [80], and Cho [37] constructed trust models to

evaluate whether nodes transmitting provenance can be trusted. Although none of the network attacks are
explicitly addressed, the schemes ofer a way to assess credibility of network.
Suhail et al. [115] proposed a provenance-based packet path tracing (PPPT) scheme. The scheme is built on

the RPL routing protocol for IoT networks that creates a destination-oriented DAG. The root node maintains
the network topology information and is therefore aware of all nodes that generate data provenance and the
potential path the data packets may take. The provenance information is maintained at the node level (to detect
compromised nodes that are dropping packets) and at the system level (to have a complete view of the network and
determine packet drops due to benign network failures). Individual nodes transmit the encoded data provenance
information, which is decoded at the root node that can verify the data and determine the presence of malicious
nodes. Compared to [118], apart from packet drop attacks, the PPPT system can detect packet replay attacks.

The enhanced index-based provenance compression algorithm (IBP) [81] can also detect replay attacks along
with packet drop attacks. For each data packet, a node generates a sequence number that incorporates an
encrypted packet counter information. The base station can decrypt the packet counter and compare it with the
expected value to determine whether a packet was dropped or replayed on the path.
Numerous studies have explored protocol-based protections of data provenance in IoT, sensor, and wireless

networks. The data provenance transmitted over these networks often includes location, data-device associations,
and other sensitive contextual information that should be protected, yet the sensors are resource-constrained to
use traditional cryptographic solutions. Research has focused on lightweight approaches to data provenance
protection. Prior work in this area revolves around the protection of provenance largely from rogue sensors and
man-in-the-middle (MiTM) attacks on communication channels.
Many of these studies leverage wireless ingerprints (also known as link ingerprints), unique characteristics

of wireless channels (e.g., radio signal strength) that allow ingerprinting of the link between two nodes and
associating it with the data that these nodes exchange. These ingerprints can be used to sign the provenance
data or authenticate device links. A high-level idea of encoding paths between nodes based on Bloom ilters was
proposed by Shebaro et al. [108]. The scheme relies on trusted infrastructure and hence can identify malicious
nodes, but does not protect against man-in-the-middle attacks. Fingerprints based on received signal strength
indicator (RSSI) values were employed by Ali et al. [10]. The ingerprints are further encrypted and combined
with a hash of transmitted data and digitally signed. The approach guards against MiTM attacks but sufers from
high communication costs. Kamal et al. [71] leveraged this idea for advanced metering infrastructure.
Physical unclonable functions (PUFs) for wireless link ingerprint generation were explored by [11, 72]. PUFs

ofer a hardware-based challenge-response mechanism that produces a unique response for a given challenge.
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PUFs are unique per device. This is a favorable quality since resource-constrained devices, e.g., IoT sensors, do
not require storing any secret information (i.e., cryptographic keys).

The beneits of using PUFs for data provenance integrity veriication were ofered by Kanuparthi et al. [72]. A
fully developed protocol for the protection of data provenance in IoT networks using PUFs was proposed by
Aman et al. [11]. PUFs allow for the authentication of IoT devices that produce sensitive data without revealing
identities, thereby preserving the anonymity of devices. A third-party trusted veriier can check the identities of
the devices.

5.1.2 Atacks on ML algorithms. Since machine learning (ML) plays an important role in a wide range of
applications, adversaries have an incentive to manipulate data or machine learning models (e.g., parameters,
structure) to alter the outcome. These attacks are known as poisoning attacks. Handling poisoning attacks through
tracking data provenance has been considered by a few studies.

Baracaldo et al. [17] introduced a provenance-based approach for detecting and iltering poisonous data collected
to train an arbitrary supervised machine learning model. The approach segments all collected untrusted/partially
trusted data into groups and evaluates them using trusted and immutable provenance records that contain data
origin and lineage. A follow-up study extended this detection approach to IoT environments and provided a
security analysis of the proposed protection [16].
As opposed to [16, 17], which focused on data poisoning, Stokes et al. [114] investigated model poisoning

attacks. The proposed provenance system called VAMP aimed to prevent poisoning attacks on ML-based systems.
VAMP used cryptographic authentication and provenance to protect both the data and the ML model. To the best
of our knowledge, VAMP has not been implemented.

5.2 Threat Detection

The detection of anomalous events has been at the center of research for decades. One of its challenges is
the accurate and timely diferentiation between malicious activity and benign behaviour. In this context, data
provenance can play a critical role providing a massive amount of information for analysis. Equipped with
provenance information, further analysis can reveal suspicious dependencies and causalities.

A common approach taken by studies focused on threat detection is provenance tracing. The value of provenance
tracing is in its ability to analyze input and analyze causalities across multiple sources (e.g., executed binary
iles, downloaded iles, system calls). In this respect, provenance tracing has characteristics of whole-system
provenance systems. However, as opposed to whole-system provenance systems, provenance tracing makes no
provisions to secure collected provenance. Yet, similar to whole-system provenance mechanisms, provenance
tracing relies on instrumentation to collect provenance of system-level events at diferent granularity levels. The
core of provenance tracing is the ability to replay execution of events, which allows to reconstruct the low of
attack and to understand how it afects the system. For these purposes, most provenance tracing systems, in
addition to events, collect causality dependencies related to the monitored instances (e.g., sensitive syscalls),
which consequently incur a signiicant run-time and storage overhead. To be practical, one of the goals for
provenance tracing systems is to balance the overhead and granularity of collected provenance information.
From application perspective, provenance tracing can be leveraged to reconstruct the speciic instance of

attack low or to perform more general analysis to detect anomalous (e.g., rarely occurring) system behaviour.
Depending on their application focus, we broadly categorized the provenance studies for threat detection into the
following categories: generic provenance tracing, malware detection, intrusion detection, and analysis/detection
of security faults.

5.2.1 Generic provenance tracing. Although typically applied in forensics for the analysis of security incidents,
provenance tracing systems are not necessarily associated with anomaly detection mechanisms. The primary

ACM Comput. Surv.



22 • Bofeng Pan, Natalia Stakhanova, and Suprio Ray

goal of a provenance tracing system is to facilitate attack investigation by collecting all causalities necessary to
accurately disclose the root cause of the problem, trace the low of the incident and assess attack damages. Thus,
granularity of provenance tracing has a direct efect on quality of the following analysis.
The state-of-the art provenance tracing systems collect provenance at the unit level, i.e., semantically au-

tonomous execution segments [77]. For example, the BEEP provenance tracing approach leverages the selective
unit-level instrumentation of binaries [77]. BEEP partitions processes into autonomous units to determine causal-
ity relationships. Based on causality analysis, binaries are selectively instrumented to capture runtime provenance
information at necessary program points. Attack investigation can be then performed by analyzing the causality
between a root cause of an incident and its symptoms using backward and forward analysis. ProTracer improves
BEEP and implements a dynamic coarse-grained provenance tainting, i.e., provenance propagation at the system
call level [84].

More ine grained unit-based provenance tracing at the library and system call level is performed by LProv [131].
Partially built on ProTracer, LProv traces system calls at the kernel level and derives the corresponding path
from the library perspective at the user level. This give LProv a more granular view of causality relationships
compared to BEEP or ProTracer. Similar BEEP or ProTracer, LProv models the execution history of events, their
dependencies and interactions as a provenance graph.

Although all three approaches view provenance tracing in a context of security incident analysis and detection,
all make an explicit and diicult to achieve in practice assumption on trustworthiness of kernel and user-space
daemons, and integrity of tracing components.

5.2.2 Malware detection. AMICO, the system developed by Vadrevu et al. [127] relies on download provenance

to measure and detect malware downloads in live network traic. In contrast to static blacklists, AMICO can
dynamically and accurately detect malware samples based on the download behaviour of network users. Download
provenance includes provenance characteristics of who downloaded iles and where these downloads came from.
Leveraging this download history, AMICO learns malware provenance models and detects malicious iles through
provenance classiication.
Unlike [127], the majority of provenance schemes leverage the existing operating systems functionality.

Upchurch et al. [126] introduced theMalware Provenance project. The Provenance project collects block-level code
pieces reused among malware variants and calculates the malware provenance signature, a malware aggregated
signature that efectively accounts for multiple malware family samples. In practice, however, the detection of
code reuse is not suicient to detect malware, e.g., in cases when no or an insuicient number of previous samples
are available.

A more generic system for the detection of malware was proposed by Sze et al. [120]. SPIF, a secure provenance-
based integrity fortiication system, leverages the existing Windows mechanisms to protect system integrity
from unknown malware. SPIF utilized sandboxing of untrusted code with discretionary access control (DAC)
policies to limit information low and consequently possible system modiications.
Similarly, a generic system was proposed by Wang et al. [132]. ProvDetector is a provenance-based system

that aims to detect stealthy malware that hides the identity of the malware by impersonating known trusted
benign processes. ProvDetector captures each process provenance at the kernel level and analyzes it to determine
deviations from benign process provenance.
A kernel-level instrumentation is also adopted by HProve, the hypervisor-level provenance tracing system

proposed by Wang et al. [130]. Designed for kernel malware, HProve allows replaying of the attack lineage to
acquire provenance data. The approach instruments the kernel during the reply to acquire the execution traces.
The backtracking technique is then applied to ind function calls and reconstruct the object manipulation chain.

5.2.3 Intrusion Detection. Provenance information has been successfully employedmore broadly for the detection
of malicious activity irrespective of malicious software presence. The vast majority of provenance-based intrusion
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Fig. 9. Provenance graphs generated for detection of a Linux Ebury atack in a presence of a compromised SSH server

detection approaches use anomaly detection models, i.e., rely on models of benign behavior to detect anomalies
based on deviations from the expected benign behavior.
For example, Figure 9 shows an example provenance graph illustrating Linux Ebury attack [47]. An attack

replaces libkeyutils.so, a standard Linux library, usually called by ssh service, with a malicious version
containing a backdoor constractor() that is tasked with exiltrating hosts’ passwords to a remote server. When a
compromised library is loaded, it hooks standard functions, among which are pam_start and pam_authenticate
that copy a user’s password.
On the surface, this attack is diicult to detect due to its seemingly innocuous behavior. Without additional

analysis, an security analyst may not be able to diferentiate between a legitimate DNS request and a suspicious
connection to an attacker controlled server over UDP protocol on port 53 that an attacker is using to avoid being
blocked. Since the new method constractor() is not noticeable, it is challenging to understand the root cause
of the problem. Provenance graph in this scenario gives a clear context allowing to see anomalous behavior and
establish the causality with a suspicious connection through libkeyutils.so library.
PIDAS [139] and Pagoda [138] are examples of such provenance-based anomaly detection systems. PIDAS, a

provenance-aware intrusion detection and analysis system, tracks ile-level provenance captured with PASS [95]
provenance collection system that records the lineage of various objects in a system (PIDAS focuses on iles,
processes, and sockets). The collected provenance is converted into a causality-based provenance graph and
analyzed to reveal anomalous paths that deviate from normal system behavior. Pagoda [138] extends this approach
by considering the anomaly degree of both a single path and the whole system provenance graph.
P-Gaussian, a provenance-based Gaussian distribution detection scheme, is a further extension of both

schemes [140]. P-Gaussian leverages PASSv2 [94] to collect system calls and dependency relationships among
objects (e.g., iles, processes, and sockets), and to generate a provenance graph. To detect intrusive behavior,
P-Gaussian calculates the similarity between paths known to correspond to a legitimate execution. Assuming
that intrusive behavior is unstable, an intrusion path would have no exact matches with legitimate sequences.
threaTrace [133] is another provenance-based system capable of detecting intrusive behavior without prior

knowledge of attack patterns. Similar to other approaches, threaTrace captures system-level provenance informa-
tion in a provenance graph.

All these systems can be applied both for real-time detection and forensics analysis of intrusions.
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Alongside intrusion detection, the detection of advanced persistent threats (APTs) has attracted a lot of research
attention. Although APTs can be regarded as a type of intrusion behaviour, APTs generally exhibit long-term
behaviour. Hence, some provenance-based systems speciically focus on the detection of APTs.
UNICORN, developed by Han et al. [56], is a real-time anomaly-based APT detection system. It constructs

provenance graphs that expose causality relationships among system objects, considering the entirety of the graph
by eiciently summarizing it as it streams into its analytic pipeline. UNICORN shares assumptions, architecture,
provenance model, and limitations with other similar systems. ANUBIS similarly employs a provenance graph to
detect APTs using machine learning classiication [12]. TRACE [66] is an enterprise-wide provenance tracking
system for APT detection, which leverages a static analysis technique for unit-based instrumentation, distributed
causality tracking, and graph query analytics features.
Several provenance-based systems were proposed for attack detection and reconstruction speciically in the

Android platform (Scippa [13], Quire [45]).

5.2.4 Detection/analysis of security faults. Provenance has been broadly applied for the analysis and detection
of various security concerns, e.g., data exiltration [48, 49], security of industry control systems [8, 97], privacy
policy violations [14, 15], and root cause analysis of security incidents [121].
PANDDE [49] was developed to detect data exiltration attempts by inside users based on the analysis of

provenance information. Provenance collected at the kernel level encompasses database user actions primarily
related to write events. To detect anomalous activity, collected data are compared against the established proiles
of users. A-PANDDE improves this approach, allowing the detection of advanced exiltration attempts [48].
The ProvTalk [121] provenance analysis system guides the investigation of root causes analysis of security

incidents in multi-tenant environments such as network function virtualisation. As opposed to the existing
systems, ProvTalk captures provenance between diferent abstraction levels (e.g., virtual resources in the cloud
and services on a host).
A provenance system proposed by Farooq et al. [8] focused on the detection of safety and security faults in

programmable logic controllers (PLCs). The PLC system is used primarily for managing industrial processes,
e.g., smart building management, power generation, water and wastewater management, and traic control
systems. The PLC typically collects inputs from a distributed set of sensors; hence, the provenance in this case
is collected from execution traces and information received from sensors. The proposed PLC-PROV system
detects violations in the safety and security policies of the PLC system by comparing them against the collected
provenance. PLC-PROV has not been implemented and remains theoretical. A similar approach was taken by
PROV-CPS, a trace-based data provenance system for cyber-physical systems [97].

Detection of privacy violations through provenance analysis were explored by Baeth et al. [14, 15]. User privacy
policy modelled as custom rules can be compared against social provenance data, i.e., contextual information that
describes the lifecycle of the social networking data, to detect privacy policy infringements.

The diversity of studies in this category emphasizes the value data provenance brings to the ield.

6 THE CHALLENGES AND OPEN PROBLEMS OF PROVENANCE RESEARCH

Research on provenance in security has been rapidly evolving over the past decade. Several problems plaguing data
provenance in security and privacy have been outlined. To resolve some of these problems, the research community
has taken advantage of the recent advances in blockchain technology, machine learning, and information retrieval
ields. Tables 3 and 4 summarize the reviewed provenance studies. Our review suggests several observations:

• Trust assumptions. Secure provenance is essential for trustworthy analysis. However, modern computational
systems are complex and rarely free of vulnerabilities; hence, their security cannot be guaranteed. The
existing provenance systems generally assume trustworthiness of provenance collection and storage
mechanisms (e.g., [117, 144]) and often delegate trust to the trustworthy third party for provenance
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Table 2. Provenance studies categorized by security properties

Provenance

security

properties

Security mechanisms Research studies

Integrity

Hash SPROV [60],[2, 7, 18, 32, 57, 61, 83, 88,
109],CamFlow [101], OTIT [73], PKLC [135],
LPM [19], WORAL [58], SECAP [143], Mutual
Agreement [105], BlockHDFS [93], AMP [46],
Trac2Chain [124], HABE [103]

Digital signature STAMP [136],[119]
Blockchain-based ProvChain [79],[55, 110], SmartProvenance [104],

ESP [147], BlockPro [70], BlockCloud [125], Lin-
eageChain [106], [6], ProvNet [36]

Other (e.g., MAC, checksums,
AM-FM proof sketch [52])

Hi-Fi [102] , [64, 129]

Non-
repudiation

Digital signature SPROV [60], [6, 7, 18, 32, 57, 61, 88, 109, 119,
145], PKLC [135], STAMP [136], LPM [19], Prog-
ger [74], WORAL [58], SECAP [143], Mutual Agree-
ment [105], ProvChain [79], ESP [147], Block-
Cloud [125], AMP [46]

Authenticity Digital signature SPROV [60],[7, 57, 61, 88, 119, 145], PKLC [135],
STAMP [136], LPM [19], WORAL [58], SECAP [143],
Mutual Agreement [105], ProvChain [79], ESP [147]

Other (e.g., PUF) BlockPro [70], [2, 6]

Conidentiality

Cryptographic encryption SPROV [60], [6, 7, 58, 61, 82, 109, 119], PKLC [135], SE-
CAP [143], Mutual Agreement [105], ProvChain [79],
BCP [144]

Access control-based HABE [103], [18, 88, 119]
Other (e.g., encoding) [64]

Privacy Cryptographic encryption STAMP [136], [2, 32, 57, 82], WORAL [58],
ProvChain [79], SmartProvenance [104], ESP [147]

Access control-based Trac2Chain [124]
Other OTIT [73], GPPub [137], [41ś43]

Availability Replication/Decentralization SmartProvenance [104], ProvChain [79], [110, 111],
BlockHDFS [93], AMP [46]

veriication [9, 32, 135, 136, 143]. These assumptions require strong assertions that these mechanisms and
the overall environment are not compromised. This is unfeasible in practice, as a system can rarely provide
full security protection.
One practical direction of research in this context is employing tamper-evident mechanisms that can
demonstrate with high reliability that data have not been changed improperly. Tamper-resistant or tamper-
proof mechanisms, i.e., structures that provide nearly complete protection from data tampering (e.g.,
blockchain technology), can further enhance integrity guarantees.
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• Resource-demanding provenance analysis. The rate of provenance data creation is proportional to the number
of objects monitored and tracked within a system. This may be exacerbated by the collected contextual
information (e.g., dependencies, system characteristics). This massive amount of information leads to
unavoidable complexity in analysis (e.g., long querying time). Hence, any provenance solution faces a
trade-of between the completeness of the collected provenance information and practical computational
constraints. In some domains, the lack of complete provenance undermines the capabilities of the systems.
For instance, in threat provenance, compromises of provenance information collection are likely to make
the detection of stealthy attacks more challenging.

• Limited scope. Initially, the main research focus was on ensuring some aspects of security within speciic
application domains. However, as the ield matured, the scope of studies did not change or broaden, i.e.,
only a limited number of studies aimed to provide a comprehensive whole-system provenance solution.
The overwhelming majority of research in secure provenance is application-speciic, therefore, diicult to
apply across multiple domains. For example, threat provenance studies are primarily designed to detect
certain types of attacks and are not generally suitable for threat detection and analysis in a broader context.

• Privacy-aware aspect of provenance. The importance of privacy in data provenance has been repeatedly
emphasized. Despite a signiicant amount of efort, research on privacy-preserving provenance is limited.
Typically, these studies ignore security issues narrowing the focus on privacy issues and vice versa, and
the majority of secure provenance studies almost exclusively focus on security aspects of data provenance.
Developing privacy-preserving techniques for data provenance that do not compromise the security
properties of the system is a necessary step to facilitate comprehensive secure data provenance.

• Real life deployment. While many secure provenance systems have been proposed, the vast majority of
them are not maintained; hence, only a few systems ofer a fully developed practical solution for secure
provenance.

• Lack of a uniied secure provenance model. Compared to the substantial amount of research on provenance
storage and management, the techniques for securing provenance remain relatively unexplored. A major
gap in this respect is the absence of a uniied and secure provenance model that can provide adequate
security and privacy guarantees. While a few studies have utilized generic data models such as OPM and
PROV that are widely used in other ields, most rely on provenance chains. Provenance chains can ensure
integrity and authenticity, however, they lack other necessary protections and therefore require adaptation
to the speciic application domain or study requirements.

To overcome the gaps in secure provenance, it is evident that there is a need for more eforts in developing
a standardized framework. This framework should be rooted in a uniied and secure provenance model that
provides comprehensive security and privacy guarantees.

To be viable in practice, the framework must outline principles for collecting, storing, and analyzing provenance
data across diverse application domains. Additionally, it should provide a standardized approach to provenance
management.

Standardized formats and ontologies for representing and exchanging provenance data can enable interoper-
ability among various systems and simplify querying and analyzing large data volumes. This will reduce the
complexity of resource-demanding provenance analysis, which is one of the signiicant challenges in this ield.
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Table 3. The summary of the reviewed studies in secure provenance

Related Work Year Category Application Domain Provenance Model Security properties

I NR Auth C Pri. Avail

Hasan et al. [61] 2009 Cryptography

based

File systems Provenance chain ✓ ✓ ✓ ✓ - -

SPROV [60] 2009 Cryptography

based

File system Provenance chain ✓ ✓ ✓ ✓ - -

Zhang et al. [145] 2009 Cryptography

based

Database DAG ✓ ✓ ✓ ✓ - -

Syalim et al. [119] 2010 Cryptography

based

Generic DAG ✓ ✓ ✓ ✓ - -

Lyle et al. [83] 2010 Cryptography

based

Generic No description ✓ - - - - -

Lu et al. [82] 2010 Cryptography

based

Cloud computing No description - ✓ ✓ ✓ ✓ -

Davidson et al. [42] 2010 Cryptography

based

Scientiic worklow sys-

tems

DAG - - - - ✓ -

EEPS [88] 2010 Cryptography

based

Whole-system provenance Provenance chain,

DAG

✓ ✓ ✓ ✓ - -

Davidson et al. [43] 2011 Cryptography

based

Scientiic worklow sys-

tems

DAG - - - * ✓ -

Davidson et al. [41] 2011 Cryptography

based

Scientiic worklow sys-

tems

DAG - - - * ✓ -

Hasan et al. [57] 2011 Cryptography

based

Mobile devices Provenance chain ✓ ✓ ✓ - ✓ -

ProPub [44] 2011 Cryptography

based

Data management OPM based - - - - ✓ -

PKLC [135] 2012 Cryptography

based

Distributed networks Provenance chain ✓ ✓ ✓ ✓ - *

Hi-Fi [102] 2012 Cryptography

based

Whole-system provenance OPM ✓ - - - - -

PDP [9] 2012 Cryptography

based

Documents Provenance chain ✓ - ✓ - ✓ -

Sultana et al. [117] 2012 Cryptography

based

WSN DAG ✓ ✓ ✓ ✓ - -

Abbadi et al. [2] 2013 Cryptography

based

Cloud systems No description ✓ - ✓ ✓ - -

STAMP [136] 2013 Cryptography

based

Mobile devices No description ✓ ✓ ✓ - ✓ -

Bates et al. [18] 2013 Cryptography

based

Distributed cloud environ-

ment

PROV ✓ ✓ - ✓ - -

Bertino et al. [22] 2014 Cryptography

based

Generic DAG ✓ ✓ ✓ - ✓ -

Hussain et al. [64] 2014 Cryptography

based

WSN DAG ✓ - - ✓ - -

OTIT [73] 2014 Cryptography

based

Mobile devices Provenance chain ✓ - - - ✓ -

Progger [74] 2014 Cryptography

based

Cloud No description ✓ ✓ ✓ - - -

WORAL [58] 2015 Cryptography

based

Mobile devices Provenance chain ✓ ✓ ✓ - ✓ -

LPM [19] 2015 Cryptography

based

Whole-system provenance Compatible with

PROV

✓ ✓ ✓ - - -

SECAP [143] 2016 Cryptography

based

Cloud systems Provenance chain ✓ ✓ ✓ ✓ - -

Mutual Agree-

ment [105]

2016 Cryptography

based

Generic DAG ✓ ✓ ✓ ✓ - -

Ahmed et al. [7] 2016 Cryptography

based

Generic DAG ✓ ✓ - ✓ - *

CamFlow [101] 2017 Cryptography

based

Whole-system provenance PROV ✓ - - - - -

ProvChain [79] 2017 Blockchain based Cloud Merkle tree ✓ ✓ ✓ ✓ ✓ *

SmartProvenance [104] 2018 Blockchain based Generic OPM ✓ ✓ ✓ ✓ ✓ *

ESP [147] 2018 Blockchain based File system Provenance chain ✓ ✓ ✓ - ✓ -

BCP [144] 2018 Blockchain based WSN Provenance table - - - ✓ - -

Sanchez et al. [32] 2018 Cryptography

based

IoT No description ✓ ✓ ✓ - ✓ -

BlockPro [70] 2018 Blockchain based IoT Provenance chain ✓ ✓ ✓ - - *

Jamil et al. [69] 2018 Cryptography

based

Documents PROV, Provenance

chain, DAG

✓ ✓ ✓ ✓ - -

GPPub [137] 2018 Cryptography

based

Generic DAG - - - - ✓ -

Griggs et al. [55] 2018 Blockchain based IoT Provenance chain ✓ - ✓ -

Siddiqui et al. [109] 2019 Cryptography

based

IoT No description ✓ ✓ - ✓ - -

BlockCloud [125] 2019 Blockchain based Cloud No description ✓ ✓ - - -

LineageChain [106] 2019 Blockchain based Generic Merkle DAG ✓ - - - - *

Ahmed et al. [5] 2019 Cryptography

based

Distributed networks PROV, provenance

chain

✓ ✓ - ✓ - -

Sigwart et al. [110] 2019 Blockchain based IoT Provenance chain ✓ - ✓ - - ✓

Sigwart et al. [111] 2020 Blockchain based IoT IoT model [99] ✓ ✓ ✓

Ahmed et al. [6] 2020 Cryptography

based

Distributed networks Provenance chain ✓ ✓ ✓ ✓ - *

ProvNet [36] 2020 Blockchain based Data sharing Blocknet (Similar to

DAG)

✓ ✓ ✓ - - -

BlockHDFS [93] 2021 Blockchain based HDFS Provenance chain ✓ - ✓ - - ✓

AMP [46] 2021 Blockchain based Media Data Merkle Tree ✓ ✓ ✓ - - ✓

HABE [103] 2021 Blockchain based IoT No description ✓ - ✓ ✓ - *

Trac2Chain [124] 2022 Blockchain based Generic DAG ✓ - ✓ * ✓ *

✓indicates that the feature is supported in the proposed approach
’-’ indicates that the feature is not supported
’*’ implied although not implemented or explicitly discussed/incorporated.
I stands for Integrity, NR stands for Non-repudiation, Auth. stands for Authentication, C stands for Conidentiality, Pri stands for Privacy, and Avail stands for Availability
Empty table cell corresponds to the case when the data about given approach feature is not explicitly discussed or mentioned in the research paper, or not applicable to the approach.
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Table 4. The summary of the reviewed studies in threat provenance

Proposed solutions Year Category Threats Detected Application Domain

Sultana et al. [116] 2011 Network-related attacks Packet drop attacks Sensor networks

Quire [45] 2011 Malware detection Confused deputy attacks Android platform

Shebaro et al. [108] 2012 Network-related attacks Packet drop attacks, mali-

cious nodes

Sensor networks

AMICO [127] 2013 Malware detection Download malware Operating system

BEEP [77] 2013 Generic provenance trac-

ing

Cyber attacks Binary programs

Ali et al. [10] 2014 Network-related attacks Man-in-the-middle attacks Wearable devices

Scippa [13] 2014 Malware detection Confused deputy, intent hi-

jacking and intent spoof-

ing attacks

Android platform

Sultana et al. [118] 2015 Network-related attacks Packet drop attacks Wireless sensor networks

SPIF [120] 2015 Malware detection Malware Microsoft Windows OS

PPD [129] 2016 Network-related attacks Packet drop attacks, packet

replay attacks

Wireless sensor networks

PIDAS [139] 2016 Intrusion detection Intrusion detection Servers

ProTracer [84] 2016 Generic provenance trac-

ing

Advanced persistent threat Operating system

PANDDE [49] 2016 Detection/Analysis of se-

curity faults

Anomalous actions Database

Upchurch et al. [126] 2016 Malware detection Malware (for code reuse) Operating system

Baeth et al. [14] 2017 Detection/Analysis of se-

curity faults

Misinformation Social networks

Aman et al. [11] 2017 Network-related attacks Physical attacks IoT

Baracaldo et al. [17] 2017 Attacks on ML algorithms Poisoning attacks Machine learning

Baracaldo et al. [16] 2018 Attacks on ML algorithms Poisoning attacks Machine learning

Baeth et al. [15] 2018 Detection/Analysis of se-

curity faults

Privacy policy violation Social media

HProve [130] 2018 Malware detection Kernel malware Operating systems

PROV-CPS [97] 2018 Detection/Analysis of se-

curity faults

Anomalous actions Cyber-Physical Systems

LProv [131] 2018 Generic provenance trac-

ing

Threat analysis Operating system

A-PANDDE [48] 2019 Detection/Analysis of se-

curity faults

Anomalous actions Database

PLC-PROV [8] 2019 Detection/Analysis of se-

curity faults

Safety and security faults Programmable logic con-

trollers (PLC) systems

Unicorn [56] 2020 Intrusion detection Advanced persistent

threats

Servers

Pagoda [138] 2020 Intrusion detection Intrusion detection Servers

ProvDetector [132] 2020 Malware detection Stealthy malware Operating system

PPPT [115] 2020 Network-related attacks Packet drop attacks, packet

replay attacks

RPL-based IoT

IBP [81] 2020 Network-related attacks Data tempering attacks,

packet drop attacks, replay

attacks, malicious nodes

Mulithop IoT

P-Gaussian [140] 2021 Intrusion detection Intrusion (variants) detec-

tion

Servers

threaTrace [133] 2021 Intrusion detection Host-based threats Servers

Kamal et al. [71] 2021 Network-related attacks Man-in-the-middle attacks Vehicle to vehicle (V2V)

communication

VAMP [114] 2021 Attacks on ML algorithms Poisoning attacks Machine learning

Irshad et al. [66] 2021 Intrusion detection Advanced persistent

threats

Servers (enterprise-wide)

Anjum et al. [12] 2022 Intrusion detection Advanced persistent

threats

Servers

ProvTalk [121] 2022 Detection/Analysis of se-

curity faults

Security incidents Networking functions vir-

tualization (NFV)
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7 CONCLUSION

Data provenance presents a powerful platform for security and privacy analytics. As the interconnectivity of
devices continues to grow rapidly, ensuring the authenticity, integrity, and conidentiality of data has become
a critical concern. In this work, we give a comprehensive overview of the role of data provenance in security
and privacy. We view provenance from two complementary perspectives: secure provenance that entails secure
handling of provenance data collection and manipulation, and threat provenance, a term we use to refer to
provenance mechanisms used for identiication and analysis of malicious activities. We deine basic concepts of
data provenance, its properties, and models.
Our review of the state-of-the-art secure provenance solutions revealed some research gaps and limitations.

Although existing studies have explored the potential of cryptography and blockchain to enhance the security
properties of data provenance, there is still a signiicant gap between theoretical frameworks and their practical
applications in this ield.

Overcoming this challenge requires the removal of impractical assumptions (e.g., trustworthiness of provenance
collection system, trusted third party veriication) and the development of standardized frameworks, secure
provenance models, and the corresponding formats to guide provenance interoperability among systems and
facilitate applicability of the developed solutions in a broader context.

In summary, while data provenance ofers a powerful platform for security and privacy analytics, there are still
many opportunities for further research in this ield. By highlighting the fundamental aspects of data provenance
and outlining the essential challenges of provenance in security and privacy, we aim to provide a foundation
for further research eforts in this domain. Our analysis serves as a guide through existing research in the ield,
providing insight into gaps in security and threat provenance.
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